首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-phase polycrystalline La0.75Sr0.25Co0.9857Fe0.02O3 samples have been prepared by solidstate ceramic technology. The samples have the rhombohedral structure (space group \(R\bar 3c\)). The studies of perovskite La0.75Sr0.25Co0.9857Fe0.02O3 by Mössbauer spectroscopy on impurity 57Fe nuclei in the temperature range of 5–293 K have revealed the existence of a superparamagnetic relaxation in the temperature range of 100–210 K. The parameters of hyperfine interactions (hyperfine magnetic fields, line shifts, and quadrupole shifts) and the anisotropy energy have been measured, and the frequencies of magnetic moment relaxation of iron ions have been estimated.  相似文献   

2.
This paper reports on measurements of the acoustic, magnetic, and electrical properties and on an x-ray microprobe analysis of a La0.825Sr0.175MnO3 single-crystal sample. The acoustic studies were made with a pulsed acoustic spectrometer operating on a 770-MHz carrier. The studies revealed anomalies in the damping coefficients and sound velocity near 300, 200 K, and the Curie temperature TC (283 K) where the colossal magnetoresistance occurs. The effect of a magnetic field on the magnetic texture of lanthanum manganites cooled below TC, observed earlier in samples of other composition, is confirmed. In addition, a region was found wherein the magnetic susceptibility of an unclamped sample behaves anomalously. The electrical resistivity was observed to decrease substantially below TC; this effect exhibits a hysteretic pattern in the interval 200–180 K.  相似文献   

3.
We report the charge state modification effects at the Mn site on the ground state properties of colossal magnetoresistive manganites. Ta5+ substitution results in an appreciable increase in the lattice parameters and unit cell volume due to increased Mn3+ concentration. The ferromagnetic-metallic ground state modifies to a cluster glass insulator for . The reduction in the transition temperatures with increasing x is ∼39 K/at.%. Besides the modification of majority carrier concentration due to increased Mn3+ concentration and enhanced local structural effects, the local electrostatic potential of the substituent seems to contribute to the unusually strong reduction of the transition temperatures of the compounds. Thermo magnetic irreversibility just below Curie temperature (Tc), non-saturation of magnetization, two distinct magnetic transitions in ac susceptibility in an appropriate static field: close to Tc and other at low temperature (the spin freezing temperature (Tg)) and non-stationary dynamics with a characteristic maximum in the magnetic viscosity close to Tg confirm a cluster glass state for . These results find additional support from a linear low temperature magnetic specific heat of x = 0.10 with a characteristic broad maximum close to Tg.  相似文献   

4.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

5.
The results of neutron diffraction studies of the La0.70Sr0.30MnO2.85 compound and its behavior in an external magnetic field are stated. It is established that in the 4–300 K temperature range, two structural perovskite phases coexist in the sample, which differ in symmetry (groups R[`3]cR\bar 3c and I4/mcm). The reason for the phase separation is the clustering of oxygen vacancies. The temperature (4–300 K) and field (0–140 kOe) dependences of the specific magnetic moment are measured. It is found that in zero external field, the magnetic state of La0.70Sr0.30MnO2.85 is a cluster spin glass, which is the result of frustration of Mn3+-O-Mn3+ exchange interactions. An increase in external magnetic field up to 10 kOe leads to fragmentation of ferromagnetic clusters and then to an increase in the degree of polarization of local spins of manganese and the emergence of long-range ferromagnetic order. With increasing magnetic field up to 140 kOe, the magnetic ordering temperature reaches 160 K. The causes of the structural and magnetic phase separation of this composition and formation mechanism of its spin-glass magnetic state are analyzed.  相似文献   

6.
K. R. Nagde  S. S. Bhoga 《Ionics》2010,16(4):361-370
The nanocrystalline La0.8Sr0.2MnO3 (LSM) is prepared by varying the revolutions per minute and milling time of planetary monomill during the mechanochemical method. The LSM forms in a relatively shorter milling time with an increase in the milling speed from 250 to 600 rpm. The structural phase transition from orthorhombic to rhombohedral phase in the LSM prepared by ball milling at the speed 250 rpm for 36 h is seen due to sintering it at 700 °C for 4 h. The crystallite size reduces with the increase in both the milling speed and the milling time individually or combined. The microhardness (HV) and sintered density increase with the reduction in the crystallite size. The temperature-activated transition temperature is suppressed by reducing the grain size in the nanometer range. The electrical dc conductivity increases with the reduction in the grain/crystallite size.  相似文献   

7.
The magnetic nanoparticles of La0.75Sr0.25MnO3 perovskite manganite with a controlled size were prepared via sol–gel procedure, followed by thermal treatment and subsequent mechanical processing of the resulting raw product. The prepared materials were structurally studied by the XRD and TEM methods and probed by DC magnetic measurements. The nanoparticles of the mean crystallite sizes 11–40 nm exhibit T C in the range of ≈310–347 K and the sample possessing 20-nm crystallites was identified as the most suitable for hyperthermia experiments. In order to obtain a colloidally stable suspension and prevent toxic effects, the selected magnetic cores were further encapsulated into silica shell using tetraethoxysilane. The detailed magnetic studies were focused on the comparison of the raw product, the bare nanoparticles after mechanical processing and the silica-coated nanoparticles, dealing also with effects of size distribution and magnetic interactions. The heating experiments were carried out in an AC field of frequencies 100 kHz–1 MHz and amplitude 3.0–8.9 kA m−1 on water dispersions of the samples, and the generated heat was deduced from their warming rate taking into account experimentally determined thermal losses into surroundings. The experiments demonstrate that the heating efficiency of the coated nanoparticles is generally higher than that of the bare magnetic cores. It is also shown that the aggregation of the bare nanoparticles increases heating efficiency at least in a certain concentration range.  相似文献   

8.
The temperature dependences of the electrical resistivity ρ(T) and the ac magnetic susceptibility χ(T, H = 0) are thoroughly investigated for a perovskite-like lanthanum manganite, namely, La0.85Sr0.15MnO3, which is preliminarily exposed to neutron irradiation with a fluence F = 2 × 1019 cm?2 and then annealed at different temperatures ranging from 200 to 1000°C. The results of the electrical resistance measurements demonstrate that neutron irradiation of the samples leads to the disappearance of the low-temperature insulating phase. As the annealing temperature increases, the insulating phase is not restored and the manganite undergoes a transformation into a metallic phase. Analysis of the magnetic properties shows that, under irradiation, the ferromagnet-paramagnet phase transition temperature TC decreases and the magnetic susceptibility is reduced significantly. With an increase in the annealing temperature, the phase transition temperature TC and magnetic susceptibility χ(T, H = 0) increase and gradually approach values close to those for an unirradiated sample. This striking difference in the behavior of the electrical and magnetic properties of the radiation-disordered La0.85Sr0.15MnO3 manganite is explained qualitatively.  相似文献   

9.
The temperature and field dependences of the specific magnetic moment of the anion-deficient La0.70Sr0.30MnO2.85 manganite have been measured. It is established, that the magnetic state of the sample studied is a cluster spin glass and it is the result of frustration of exchange Mn3+-O-Mn3+ interactions due to the redistribution of oxygen vacancies. The increase of the magnetic field leads to an increase in the degree of polarization of local spins of manganese. It is established using the magnetic criterion that a phase transition into the paramagnetic state for the anion-deficient La0.70Sr0.30MnO2.85 manganite is a thermodynamic second order phase transition. The causes and mechanism of the magnetic phase separation are discussed.  相似文献   

10.
The optical, magnetooptical (Kerr effect and magnetotransmission), and magnetotransport properties of La2/3Ca1/3MnO3/La2/3Sr1/3MnO3 and La2/3Ca1/3MnO3/SrTiO3/La2/3Sr1/3MnO3 heterostructures on SrTiO3 substrates are studied. The contribution of the interface boundary to the magnetotransmission is typical of a material with a transitional composition. It is found that a 2-nm-thick SrTiO3 spacer does not influence the shape and position of the magnetotransmission peak in a field normal to the surface of the heterostructure but increases the contribution of the upper layer to the magnetotransmission in the Voigt geometry and also enhances the magnetoresistance that is due to the tunneling of spin-polarized carriers through the spacer. The Kerr spectra taken of the heterostructures are typical of single-layer single-crystal films.  相似文献   

11.
Nano-constriction array in La0.67Sr0.33MnO3 film was fabricated by using ion beam etching masked by a monolayer of packed and ordered array of SiO2 microspheres. Nano-constrictions of around 50 nm in width were fabricated. The low field magnetoresistance (LFMR) exhibited in the samples were observed to be current dependent and the I-V characteristics of the film were found to be nonlinear. These observations were attributed to the co-existence of the ferromagnetic regions and the nano-constricted region of weakened ferromagnetic coupling where Mn3+-O-Mn4+ bond were distorted due to the ion beam bombardment. The spin polarized bias current would strengthen local ferromagnetic coupling when passing through this nano-constricted regions. This current effect is relatively large comparing to the external magnetic field to the drop of resistance.  相似文献   

12.
The acoustical, resistive, and magnetic properties of a La0.75Sr0.25MnO3 lanthanum manganite single crystal are investigated in the temperature range involving the second-order magnetic phase transition. The acoustical measurements are performed by the pulse-echo method in the frequency range 14–90 MHz. It is found that, as the temperature decreases, the velocity of a longitudinal acoustic wave propagating along the [111] axis in the single crystal drastically increases at temperatures below the critical point of the magnetic phase transition. No dispersion of the acoustic velocity is revealed. A sharp increase in the acoustic velocity is accompanied by the appearance of an acoustical absorption peak. The observed effects are discussed with due regard for the interaction of acoustic waves with the magnetic moments of the manganese ions.  相似文献   

13.
The heat capacity in a La0.8 Ag0.15 MnO3 manganite has been measured near the Curie temperature T C in applied magnetic fields up to 26 kOe to study the scaling critical behavior and to obtain the universality class. The conventional scaling fails in application to the manganites with a hysteresis and the strong sensitivity of T C to a magnetic field. However, the application of the improved scaling procedure designed by us allows yielding the good scaling the magnetic heat =0.23 capacity in La0.85Ag0.15MnO3, which may belong to a new universality class for systems with the strong spin-orbital coupling of t 2g -electrons, namely, double -Heisenberg with the critical exponent of the heat capacity α = ?0.23 and the critical exponent of the correlation radius v=0.7433. This new universality class is consistent with the crystal, magnetic and orbital symmetries for the La0.85Ag0.15MnO3. Scaling failure in the vicinity of T C in the range of t/H 1/2ν ≈ [?0.033;0.024] is understood by finite-size and other disordering effects when T →T C. It is remarkable that finite-size effect is consistent with grain size, L ≈ 50 μm, in the La0.85Ag0.15MnO3. The correlation radius, Lt ν ≈ 30.28 Å, estimated from the finite-size effect is of the same order of magnitude with the sizes of the ferromagnetic fluctuations and drops in manganites.  相似文献   

14.
The magnetic state of the manganite La0.93Sr0.07MnO3 in the range 4.2–290 K was studied using elastic neutron scattering. The magnetic state of this compound was found to occupy a particular place in the La1?xSrxMnO3 solid-solution system, in which the antiferromagnetic type of order (LaMnO3, TN=139.5 K) switches to ferromagnetic ordering (La0.9Sr0.1MnO3, TC=152 K) with increasing x. In the transition state, this compound contains large-scale spin configurations of two types. A fractional crystal volume of about 10% is occupied by regions of the ferromagnetic phase with an average linear size of 200 Å, while the remainder of the crystal is a phase with a nonuniform canted magnetic structure. Arguments are presented for the phase separation of the La0.93Sr0.07MnO3 spin system being accounted for by Mn4+ ion ordering.  相似文献   

15.
The electrical and magnetic characteristics of La0.7Sr0.3MnO3 (LSMO) epitaxial manganite films are investigated by different methods under conditions when the crystal structure is strongly strained as a result of mismatch between the lattice parameters of the LSMO crystal and the substrate. Substrates with lattice parameters larger and smaller than the nominal lattice parameter of the LSMO crystal are used in experiments. It is shown that the behavior of the temperature dependence of the electrical resistance for the films in the low-temperature range does not depend on the strain of the film and agrees well with the results obtained from the calculations with allowance made for the interaction of electrons with magnetic excitations in the framework of the double-exchange model for systems with strongly correlated electronic states. Investigations of the magneto- optical Kerr effect have revealed that an insignificant (0.3%) orthorhombic distortion of the cubic lattice in the plane of the NdGaO3(110) substrate leads to uniaxial anisotropy of the magnetization of the film, with the easy-magnetization axis lying in the substrate plane. However, LSMO films on substrates (((LaAlO3)0.3+(Sr2AlTaO6)0.7)(001)) ensuring minimum strain of the films exhibit a biaxial anisotropy typical of cubic crystals. The study of the ferromagnetic resonance lines at a frequency of 9.76 GHz confirms the results of magnetooptical investigations and indicates that the ferromagnetic phase in the LSMO films is weakly inhomogeneous.  相似文献   

16.
For La 0.825 3+ Sr 0.175 2 +Mn3+O 2.912 2? anion-deficient manganite, the specific magnetization, the dynamic magnetic susceptibility, and the heat capacity are investigated. This material is found to be an inhomogeneous ferromagnet below the Curie point T C ≈ 122 K, which is much lower than the Curie point determined for the stoichiometric composition (T C ≈ 268 K). An increase in magnetic field by two orders of magnitude leads to an increase in the Curie temperature by ΔT ≈ 12 K. The presence of oxygen vacancies leads to the frustration of a part, namely, V fr ≈ 22%, of the indirect Mn3+-O-Mn3+ exchange interactions, but the spin glass state is not realized. The ferromagnetic matrix of the material under study is characterized by a scatter in the exchange interaction intensities. The heat capacity is found to exhibit an anomalous behavior. Based on the Banerjee magnetic criterion, it is established that the ferromagnet-paramagnet transition observed for La 0.825 3+ Sr 0.175 2+ Mn3+O 2.912 2? anion-deficient manganite is a second-order thermodynamic phase transition. The mechanism and origin of the critical behavior of the system under investigation are discussed.  相似文献   

17.
The magnetic switching processes in mechanically controllable junctions (MCJ), made from high-quality single crystals of La0.7Sr0.3MnO3, are studied as a function of the DC current (up to 109 A/cm2) passing through the nanoconstriction. The current-voltage (I-V) curves of the MCJ are typical for an electron tunnelling process. By fitting I-V curves to the Simmons model, the barrier width (1 - 1.6) nm and height (0.4 - 1.7) eV of the junctions and their effective tunnel area (1-10) × 10?11 cm2 were estimated. Based on the close relation between transport properties and the magnetization in manganese compounds, we interpret the jumps in the conductance of MCJ, by integer multiples of e2/h, as due to the configuration reorientation of the magnetization of the Mn-ions clusters at the constriction surfaces.  相似文献   

18.
The crystal and magnetic structures of the oxygen deficient manganites La0.7Sr0.3MnO3-d (d = 0.15, 0.20) have been studied by means of powder neutron diffraction over the 0–5.2 GPa pressure and 10–290 K temperature ranges. La0.7Sr0.3MnO2.85 exhibits a coexistence of rhombohedral and tetragonal (I4/mcm) crystal structures and below Tg ~ 50 K a spin glass state is formed. La0.7Sr0.3MnO2.80 exhibits a tetragonal (I4/mcm) crystal structure. Below Tg ~ 50 K a phase separated magnetic state is formed, involving coexistence of C-type AFM domains with spin glass domains. In both compounds the crystal structure and magnetic states remain stable upon compression. The factors leading to the formation of different magnetic states in La0.7Sr0.3MnO3-d (d = 0.15, 0.20) and their specific high pressure behavior, contrasting with that of the stoichiometric A0.5Ba0.5MnO3 (A = Nd, Sm) compounds showing pressure-induced suppression of the spin glass state and the appearance of the FM state, are analysed.  相似文献   

19.
The kinetics of magnetization reversal of a thin LSMO film has been studied for the first time. It is shown that the magnetic domain structure critically depends on the conditions of structure formation. In the demagnetized state (after zero-field cooling from T c ), a maze-like domain microstructure with perpendicular magnetization is formed in the film. However, after field cooling and/or saturating magnetization by a field of arbitrary orientation, the [110] direction of spontaneous magnetization in the film plane is stabilized; this pattern corresponds to macrodomains with in-plane magnetization. Further film magnetization reversal (both quasi-static and pulsed) from this state is implemented via nucleation and motion of 180° “head-to-head” domain walls. Upon pulse magnetization reversal, the walls “jump” at a distance proportional to the applied field strength and then undergo thermally activated drift. All dynamic characterisitcs critically depend on the temperature when the latter varies around the room temperature.  相似文献   

20.
Two-phase composites xLa0.7Sr0.3MnO3/(100–x)C (x = 5–85 mass %) have been synthesized. The magnetoresistive properties of these materials in magnetic fields from 0 to 15 kOe have been investigated. It has been shown that, at room temperature, the positive isotropic magnetoresistance for samples with x = 50–60 mass % reaches 15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号