首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the 57Fe isotope content and high-frequency magnetic field amplitude h 1 on the shape of the NMR spectrum of multiferroic BiFeO3 at T = 4.2 K are studied by pulsed nuclear magnetic resonance. The NMR spectrum shape and transverse relaxation time T 2 are found to depend strongly on the 57Fe isotope content and h 1 in multiferroic BiFeO3 in the presence of a spatial spin-modulated structure of a cycloid type. In a sample with a high 57Fe isotope content, the Suhl-Nakamura interaction contributes substantially to T 2. When these dynamic effects are taken into account for analysis of the NMR spectrum shape, an undisturbed (without an anharmonicity effect) spatial spin-modulated structure of a cycloid type is shown to exist in BiFeO3.  相似文献   

2.
The NMR spectra of 63Cu and 65Cu natural copper isotopes in a LiCu2O2 multiferroic single crystal compound have been measured above and below the temperature of magnetic phase transition (T c = 23 K) in zero magnetic field and in applied magnetic field H 0 = 94 kOe parallel to the c axis of the crystal. In LiCu2O2 below T c, a complicated helical magnetic structure with the magnetic moment of copper ions Cu2+ varying along the chain according to the harmonic law with the wave vector being incommensurate to the crystal lattice constants has been revealed. The experimental results have been successfully interpreted using the model based on the planar helical magnetic structure. It has been found that the plane of rotation for Cu2+ magnetic moments in LiCu2O2 does not coincide at H 0 = 0 with the ab plane. The high magnetic field (H 0 = 94 kOe) applied along the c axis of the single crystal does not affect the spatial orientation of the plane of rotation.  相似文献   

3.
The Cr1/3NbS2 magnet is studied by nuclear magnetic resonance (NMR) at 53Cr nuclei in a zero applied magnetic field. The following two frequency ranges are distinguished in the 53Cr NMR spectrum at T = 4.2 K: ν 1 = 64–68 MHz and ν 2 = 49–51 MHz. They can be related to two valence states of chromium ions, namely, Cr4+ and Cr3+. The components of the electric field gradient, the hyperfine fields, and the magnetic moment at chromium atoms are determined. The NMR data demonstrate that the magnetic moments of chromium lie in plane ab and form a magnetic structure consisting of regions with a helicoidal magnetic order and regions where this order is broken.  相似文献   

4.
The influence of variable valence on NSR spectra of 53Cr nuclei in ferromagnetic CuCr2?xSbxS4 (x = 0, 0.02, 0.07) at T = 77 K is considered. For quadrupole nuclei in locally anisotropic positions, the effects of variable valence result in averaging of not only the resonance frequency but also of the quadrupole and magnetic anisotropy constants. The significant difference between the experimental and calculated values of these constants indicates the important role of the intrinsic electronic contribution to the anisotropy of hyperfine fields of compounds containing Cr4+ ions. Additional lines caused by intrinsic and induced defects in the structure are observed in the spectra of doped and undoped compounds.  相似文献   

5.
Deuterofullerites C60Dx have been studied by 2H and 13C NMR. These fullerites have two types of carbon–deuterium bonds: C–D terminal bonds, characterized by the quadrupole coupling constant (QCC) of 171 kHz, and –C ··· D ··· C– bridging bonds with a QCC of 56 kHz. The latter is responsible for the rigid lattice found in these fullerites, which is untypical of fullerenes. PACS 81.05.Tp; 82.56.Fk; 61.48.+c; 61.18.Fs; 61.10.Nz  相似文献   

6.
We present time-resolved photoelectron spectra of mass-selected Ag2O2 anions. The anions are photoexcited by photons with an energy of 3.1 eV, and photoelectron spectra of the excited species Ag2O2 - * and the subsequently appearing fragments are recorded using a probe laser pulse with a photon energy of 1.5 eV. The excited state of Ag2O2 - has a short lifetime of 130 fs±70 fs only and decays by direct photodesorption of O2. The data demonstrate the ability of time-resolved photoelectron spectroscopy (TR-PES) to observe the breaking of chemical bonds if the decay process of the excited state is direct (non-thermal desorption). The data are compared to recent results of a NeNePo experiment [1] on the same system. PACS 68.43.Tj; 78.47.+p; 33.80.Eh; 36.40.-c  相似文献   

7.
A miniature tunable TEA CO2 laser using isotope 13C16O2 as the active medium is developed to extend the spectral range of CO2 lasers for further application. The optimization of the energy parameters of the tunable TEA 13C16O2 laser and the same laser using 12C16O2 are studied. When a gas mixture (13C16O2: N2: He = 1: 1: 3) at a total pressure of 6.4 × 104 Pa is used, the TEA 13C16O2 laser of a 45-cm3 active volume obtains 51 emission lines in the [0001–1000] and [0001–0200] bands. The maximum pulse energy of the TEA 13C16O2 laser is about 357 mJ. The same laser using the conventional gas mixture (12C16O2: N2: He = 1: 1: 3) at a pressure of 6.66 × 104 Pa is measured to obtain 69 laser emission lines and the maximum pulse energy of laser radiation is about 409 mJ.  相似文献   

8.
1H and 19F spin-lattice relaxation times in polycrystalline diammonium hexafluorozirconate have been measured in the temperature range of 10–400 K to elucidate the molecular motion of both cation and anion. Interesting features such as translational diffusion at higher temperatures, molecular reorientational motion of both cation and anion groups at intermediate temperatures and quantum rotational tunneling of the ammonium group at lower temperatures have been observed. Nuclear magnetic resonance (NMR) relaxation time results correlate well with the NMR second moment and conductivity studies reported earlier.  相似文献   

9.
The dynamics of cold atoms in conservative optical lattices obviously depends on the geometry of the lattice. But very similar lattices may lead to deeply different dynamics. In a 2D optical lattice with a square mesh, it is expected that the coupling between the degrees of freedom leads to chaotic motions. However, in some conditions, chaos remains marginal. The aim of this paper is to understand the dynamical mechanisms inhibiting the appearance of chaos in such a case. As the quantum dynamics of a system is defined as a function of its classical dynamics – e.g. quantum chaos is defined as the quantum regime of a system whose classical dynamics is chaotic – we focus here on the dynamical regimes of classical atoms inside a well. We show that when chaos is inhibited, the motions in the two directions of space are frequency locked in most of the phase space, for most of the parameters of the lattice and atoms. This synchronization, not as strict as that of a dissipative system, is nevertheless a mechanism powerful enough to explain that chaos cannot appear in such conditions.  相似文献   

10.
Absolute cross-sections for electron-impact dissociative ionization of C2 H2+ and C2 D2+ to CH+, C+, C2+ , H+, CH2+ and C2D+ fragments are determined for electron energies ranging from the corresponding threshold to 2.5 keV. Results obtained in a crossed beams experiment are analyzed to estimate the contribution of dissociative ionization to each fragment formation. The dissociative ionization cross sections are seen to decrease for more than an order of magnitude, from CH+ (5.37±0.10) × 10-17 cm2 over C+ (4.19± 0.16) × 10-17 cm2, C2D+ (3.94±0.38) × 10-17 cm2, C2+ (3.82±0.15) × 10-17 cm2 and H+ (3.37±0.21) × 10-17 cm2 to CH2+ (2.66±0.14) × 10-18 cm2. Kinetic energy release distributions of fragment ions are also determined from the analysis of the product velocity distribution. Cross section values, threshold energies and kinetic energies are compared with the data available from the literature. Conforming to the scheme used in the study of the dissociative excitation of C2H2+ ( C2 D2+ )\left( {\rm C}_2 {\rm D}_2^+ \right), the cross-sections are presented in a format suitable for their implementation in plasma simulation codes.  相似文献   

11.
The spin-lattice and spin-spin relaxation times have been measured for 63,65Cu NMR in the infinite-layer anti-ferromagnet SrCuO2 in the ordered state for temperatures from 4.2 to 361 K. In the region of low temperatures (T≤250 K), both relaxation processes are of the same nature and the main contribution to the relaxation rate is associated with the diffusion of a small number of holes with an activation energy of ~42 meV. In the high-temperature range (T > 250 K), contributions to the transverse relaxation rate exhibit redistribution and this relaxation process is determined predominantly by indirect interactions.  相似文献   

12.
77Se nuclear magnetic resonance (NMR) measurements in the Bi2Se3 topological insulator single crystal were carried out at temperatures 15.8, 88, and 293 K. Bismuth selenide single crystalline plate was studied in the orientation when the crystallographic c-axis was parallel to the external magnetic field B0. We observed two component NMR spectra at the three temperatures. It was shown that the NMR spectrum almost did not move with decreasing temperature and the density of charge carriers did not follow the thermal activation law.  相似文献   

13.
Absolute cross-sections for electron-impact ionization and dissociation of C2H2+ and C2D2+ have been measured for electron energies ranging from the corresponding thresholds up to 2.5 keV. The animated crossed beams experiment has been used. Light as well as heavy fragment ions that are produced from the ionization and the dissociation of the target have been detected for the first time. The maximum of the cross-section for single ionization is found to be (5.56 ± 0.03)× 10-17 cm2 around 140 eV. Cross-sections for dissociation of C2 H2+ (C2D2+) to ionic products are seen to decrease for two orders of magnitude, from C2D+ (12.6 ± 0.3) × 10-17 cm2 over CH+(9.55 ± 0.06) × 10-17 cm2, C+ (6.66 ± 0.05) × 10-17 cm2, C2+ (5.36 ± 0.27) × 10-17 cm2, H+ (4.73 ± 0.29) × 10-17 cm2 and CH2+ (4.56 ± 0.27) × 10-18 cm2 to H2+ (5.68 ± 0.49) × 10-19 cm2. Absolute cross-sections and threshold energies have been compared with the scarce data available in the literature.  相似文献   

14.
Absolute transition frequencies of the b 3Π(0u +) - X 1Σg + system of K2 were measured in a molecular beam with Lamb dip absorption spectroscopy applying a frequency comb from a femtosecond pulsed laser. Both, K atoms and K2 molecules are present in the beam and are expected to interact by collisions. The atoms can be deflected optically out of the beam, and thus the collision rate between K atoms and K2 molecules is changed by about an order of magnitude. The molecular transition frequencies for low collisional rate are compared with those for high one. Limits for the collisional frequency shift within the beam are determined.  相似文献   

15.
Starting fromthe Skyrme interaction f_ together with the volume pairing interaction, we study the g factors for the 21,2+ excitations of 132,134,136Te. The coupling between one- and two-phonon terms in the wave functions of excited states is taken into account within the finite-rank separable approximation. Using the same set of parameters we describe the available experimental data and give the prediction for 136Te, g(21+) = ?0.18 in comparison to +0.32 in the case of 132Te.  相似文献   

16.
Sb doped SnO2 films prepared by DC sputtering and heating were characterized by 119Sn conversion electron Mössbauer spectrometry (CEMS). An asymmetric doublet was observed in the Mössbauer spectra of 1 %, 3 %, and 10 % Sb doped SnO2 films. The peak ratios of doublets are considered to be due to the columnar crystal growth on the substrate. With the doping level of Sb, both the isomer shift (δ) and the quadrupole splitting (Δ) increased. After annealing, δ increased and Δ decreased for each sample. These results suggest the followings. The electron doping of the SnO2 lattice by pentavalent Sb induces the increase of the electron density at the SnIV nucleus. The annealing process leads to more complete accommodation of the Sb dopant that results in more effective electron doping and therefore increasing isomer shift for tin. Simultaneously, the distortion of the lattice caused by Sb is relaxed and the quadrupole splitting decreases.  相似文献   

17.
The resonance frequencies and relaxation mechanisms of Cs2CuBr4 and Cs2ZnBr4 were examined by static nuclear magnetic resonance (NMR) method. Here, the two inequivalent Cs(1) and Cs(2) sites surrounded by Br ions were distinguished. The saturation recovery traces for 133Cs nuclei in Cs2CuBr4 with the paramagnetic ions, and those in Cs2ZnBr4 without the paramagnetic ions were each fitted by four exponential functions. From these results, the spin–lattice relaxation times T1 in the laboratory frame of 133Cs nuclei in the two crystals were obtained, and Cs(1) surrounded by 11 bromide ions has a longer relaxation time than Cs(2) surrounded by 9 bromide ions.  相似文献   

18.
The magnetization of a series of Al2O3 with different particle sizes and their 27Al NMR spectra have been studied at room temperature. The field dependence of the magnetization demonstrated the existence of a long-range ferromagnetic order in a small part of the sample at room temperature; however, the relative volume of this contribution was very small (less than 1%), and this seems likely due to an impurity phase. The NMR spectra did not contain any lines of metallic aluminum the existence of which in these nanooxides was assumed before in a surface layer of the nanoparticles, according to the data of other techniques. The data on the phase composition and the charge distribution in different phases of the Al2O3 nanoparticles have been obtained. The change in the mean particle size (by a factor of almost three) only insignificantly changed their phase composition.  相似文献   

19.
87Rb nuclear magnetic resonance was experimentally studied in a quasi-two-dimensional Heisenberg antiferromagnet RbFe(MoO4)2. Dipole fields at the 87Rb nuclei were found over a wide range of temperatures and static magnetic fields. Magnetic structures in the ordered phase were determined at various magnetic fields.  相似文献   

20.
The spectra of complex permittivity of a Ba2Mg2Fe12O22 single crystal belonging to the family of Y-type hexaferrites have been measured over a wide temperature range (10–300 K) with the aim of determining the dynamic parameters of the phonon and magnetic subsystems in the terahertz and infrared frequency ranges (3–4500 cm−1). A factor-group analysis of the vibrational modes has been performed, and the results obtained have been compared with the experimentally observed resonances. The oscillator parameters of all nineteen phonon modes of E u symmetry, which are allowed by the symmetry of the Ba2Mg2Fe12O22 crystal lattice, have been calculated. It has been found that, at temperatures below 195 and 50 K, the spectral response exhibits new absorption lines due to magnetic excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号