首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the multiple container loading cost minimization problem (MCLCMP), rectangular boxes of various dimensions are loaded into rectangular containers of various sizes so as to minimize the total shipping cost. The MCLCMP can be naturally modeled as a set cover problem. We generalize the set cover formulation by introducing a new parameter to model the gross volume utilization of containers in a solution. The state-of-the-art algorithm tackles the MCLCMP using the prototype column generation (PCG) technique. PCG is an effective technique for speeding up the column generation technique for extremely hard optimization problems where their corresponding pricing subproblems are NP-hard. We propose a new approach to the MCLCMP that combines the PCG technique with a goal-driven search. Our goal-driven prototype column generation (GD-PCG) algorithm improves the original PCG approach in three respects. Computational experiments suggest that all three enhancements are effective. Our GD-PCG algorithm produces significantly better solutions for the 350 existing benchmark instances than all other approaches in the literature using less computation time. We also generate two new set instances based on industrial data and the classical single container loading instances.  相似文献   

2.
The q-mode problem is a combinatorial optimization problem that requires partitioning of objects into clusters. We discuss theoretical properties of an existing mixed integer programming (MIP) model for this problem and offer alternative models and enhancements. Through a comprehensive experiment we investigate computational properties of these MIP models. This experiment reveals that, in practice, the MIP approach is more effective for instances containing strong natural clusters and it is not as effective for instances containing weak natural clusters. The experiment also reveals that one of the MIP models that we propose is more effective than the other models for solving larger instances of the problem.  相似文献   

3.
The multi-item, single-level, capacitated, dynamic lot-sizing problem, commonly abbreviated as CLSP, is considered. The problem is cast in a tight mixed-integer programming model (MIP); tight in the sense that the gap between the optimal value of MIP and that of its linear programming relaxation (LP) is small. The LP relaxation of MIP is then solved by column generation. The resulting feasible solution is further improved by adopting the corresponding set-up schedule and re-optimizing variable costs by solving a minimum-cost network flow (trans-shipment) problem. Subsequently, the improved solution is used as a starting solution for a tabu search procedure, with the worth of moves assessed using the same trans-shipment problem. Results of computational testing of benchmark problem instances are presented. They show that the heuristic solutions obtained are effective, in that they are extremely close to the best known solutions. The computational efficiency makes it possible to solve realistically large problem instances routinely on a personal computer; in particular, the solution procedure is most effective, in terms of solution quality, for larger problem instances.  相似文献   

4.
In this paper we present a framework to tackle mixed integer programming problems based upon a “constrained” black box approach. Given a MIP formulation, a black-box solver, and a set of incumbent solutions, we iteratively build corridors around such solutions by adding exogenous constraints to the original MIP formulation. Such corridors, or neighborhoods, are then explored, possibly to optimality, with a standard MIP solver. An iterative approach in the spirit of a hill climbing scheme is thus used to explore subportions of the solution space. While the exploration of the corridor relies on a standard MIP solver, the way in which such corridors are built around the incumbent solutions is influenced by a set of factors, such as the distance metric adopted, or the type of method used to explore the neighborhood. The proposed framework has been tested on a challenging variation of the lot sizing problem, the multi-level lot sizing problem with setups and carryovers. When tested on 1920 benchmark instances of such problem, the algorithm was able to solve to near optimality every instance of the benchmark library and, on the most challenging instances, was able to find high quality solutions very early in the search process. The algorithm was effective, in terms of solution quality as well as computational time, when compared with a commercial MIP solver and the best algorithm from the literature.  相似文献   

5.
This article deals with a particular class of routing problem, consisting of the planning and routing of technicians in the field. This problem has been identified as a multiperiod, multidepot uncapacitated vehicle routing problem with specific constraints that we call the multiperiod field service routing problem (MPFSRP). We propose a set covering formulation of the problem for the column generation technique and we develop an exact branch and price solution method for small-sized instances. We also propose several heuristic versions for larger instances. We present the results of experiments on realistic data adapted from an industrial application.  相似文献   

6.
We propose two exact methods to solve an integrated employee-timetable and job-shop-scheduling problem. The problem is to find a minimum cost employee-timetable, where employees have different competences and work during shifts, so that the production, that corresponds to a job-shop with resource availability constraints, can be achieved. We introduce two new exact procedures: (1) a decomposition and cut generation approach and (2) a hybridization of a cut generation process with a branch and bound strategy. We also propose initial cuts that strongly improve these methods as well as a standard MIP approach. The computational performances of those methods on benchmark instances are compared to that of other methods from the literature.  相似文献   

7.
This paper presents a hybrid of a general heuristic framework and a general purpose mixed-integer programming (MIP) solver. The framework is based on local search and an adaptive procedure which chooses between a set of large neighborhoods to be searched. A mixed integer programming solver and its built-in feasibility heuristics is used to search a neighborhood for improving solutions. The general reoptimization approach used for repairing solutions is specifically suited for combinatorial problems where it may be hard to otherwise design suitable repair neighborhoods. The hybrid heuristic framework is applied to the multi-item capacitated lot sizing problem with setup times, where experiments have been conducted on a series of instances from the literature and a newly generated extension of these. On average the presented heuristic outperforms the best heuristics from the literature, and the upper bounds found by the commercial MIP solver ILOG CPLEX using state-of-the-art MIP formulations. Furthermore, we improve the best known solutions on 60 out of 100 and improve the lower bound on all 100 instances from the literature.  相似文献   

8.
This paper describes the details of a successful application where an integer programming and evolutionary hybrid algorithm was used to solve a bus driver duty optimization problem. The task is NP-hard, therefore theoretically optimal solutions can only be calculated for very small problem instances. Our aim is to obtain solutions of good quality within reasonable time limits. We first applied an integer programming approach to a set partitioning problem. The model was solved with a column generation algorithm in a branch and bound scheme. In order to solve larger real-life problems, we have combined the integer programming method with a greedy 1+1 steady state evolutionary algorithm. The resulting hybrid algorithm was capable of providing near-optimal solutions within reasonable timescales to larger instances of the bus driver scheduling problem. We present the results and running times of our algorithm in detail, as well as possible directions of future improvements.  相似文献   

9.
In this paper we formulate an integer programming model for the Location and Routing Problem with Pickup and Delivery. We propose a column generation scheme and implement, for the subproblem, a label-setting algorithm for the shortest path with pickup and delivery and time windows problem. We also propose a set of heuristics to speed up this process. To validate the model, we implement the column generation scheme and test it on different instances developed in this paper. We also provide an analysis of how the costs of opening depots and the fixed cost of routes affect the optimal solution.  相似文献   

10.
This paper is concerned with the problem of assigning employees to a number of work centres taking into account employees' expressed preferences for specific shifts, off-days, and work centres. This particular problem is faced by the Kuwait National Petroleum Corporation that hires a firm to prepare schedules for assigning employees to about 86 stations distributed all over Kuwait. The number of variables in a mixed-integer programming model formulated for this problem is overwhelming, and hence, a direct solution to even the continuous relaxation of this model for relatively large-scale instances is inconceivable. However, we demonstrate that a column generation method, which exploits the special structures of the model, can readily solve the continuous relaxation of the model. Based on this column generation construct, we develop an effective heuristic to solve the problem. Computational results indicate that the proposed approach can facilitate the generation of good-quality schedules for even large-scale problem instances in a reasonable time.  相似文献   

11.
In this paper we propose the integration of column generation in the revised normal boundary intersection (RNBI) approach to compute a representative set of non-dominated points for multi-objective linear programmes (MOLPs). The RNBI approach solves single objective linear programmes, the RNBI subproblems, to project a set of evenly distributed reference points to the non-dominated set of an MOLP. We solve each RNBI subproblem using column generation, which moves the current point in objective space of the MOLP towards the non-dominated set. Since RNBI subproblems may be infeasible, we attempt to detect this infeasibility early. First, a reference point bounding method is proposed to eliminate reference points that lead to infeasible RNBI subproblems. Furthermore, different initialisation approaches for column generation are implemented, including Farkas pricing. We investigate the quality of the representation obtained. To demonstrate the efficacy of the proposed approach, we apply it to an MOLP arising in radiotherapy treatment design. In contrast to conventional optimisation approaches, treatment design using column generation provides deliverable treatment plans, avoiding a segmentation step which deteriorates treatment quality. As a result total monitor units is considerably reduced. We also note that reference point bounding dramatically reduces the number of RNBI subproblems that need to be solved.  相似文献   

12.
The routing and wavelength assignment (RWA) problem typically occurs in wavelength division multiplexing optical networks. Given a number of available wavelengths, we consider here the problem of maximising the number of accepted connections with respect to the clash and continuity constraints. We first propose a new strategy which combines two existing models. This leads to an improved column generation scheme. We also present two heuristics to compute feasible solutions: a hybrid heuristic and the integer solution at the root node of the column generation. Our approaches are compared with the best existing results on a set of classic RWA instances.  相似文献   

13.
The railroad blocking problem is an important issue at the tactical level of railroad freight transportation. This problem consists of determining paths between the origins and destinations of each shipment to minimize the operating and user costs while satisfying the railroad supply and demand restrictions. A mixed-integer program (MIP) is developed to find the optimal paths, and a new heuristic is developed to solve the proposed model. This heuristic decomposes the model into two sub-problems of manageable size and then provides feasible solutions. We discuss the performance of the proposed heuristic for a set of instances with up to 90 stations. A comparison with the CPLEX MIP solver shows that the heuristic gives the exact solution for 10 out of 15 instances. For the remaining instances, the heuristic obtained solutions within a tolerance of 0.03–0.84%. Furthermore, compared with the CPLEX MIP solver, the heuristic reduced the run time by an average of 85% for all 15 instances. Finally, we present the computational results of the heuristic applied to Iranian railroads.  相似文献   

14.
The integrated crew scheduling (ICS) problem consists of determining, for a set of available crew members, least-cost schedules that cover all flights and respect various safety and collective agreement rules. A schedule is a sequence of pairings interspersed by rest periods that may contain days off. A pairing is a sequence of flights, connections, and rests starting and ending at the same crew base. Given its high complexity, the ICS problem has been traditionally tackled using a sequential two-stage approach, where a crew pairing problem is solved in the first stage and a crew assignment problem in the second stage. Recently, Saddoune et al. (2010b) developed a model and a column generation/dynamic constraint aggregation method for solving the ICS problem in one stage. Their computational results showed that the integrated approach can yield significant savings in total cost and number of schedules, but requires much higher computational times than the sequential approach. In this paper, we enhance this method to obtain lower computational times. In fact, we develop a bi-dynamic constraint aggregation method that exploits a neighborhood structure when generating columns (schedules) in the column generation method. On a set of seven instances derived from real-world flight schedules, this method allows to reduce the computational times by an average factor of 2.3, while improving the quality of the computed solutions.  相似文献   

15.
Branch-and-price approach for the multi-skill project scheduling problem   总被引:1,自引:0,他引:1  
This work introduces a procedure to solve the multi-skill project scheduling problem (MSPSP) (Néron and Baptista, International symposium on combinatorial, optimization (CO’2002), 2002). The MSPSP mixes both the classical resource constrained project scheduling problem and the multi-purpose machine model. The aim is to find a schedule that minimizes the completion time (makespan) of a project, composed of a set of activities. In addition, precedence relations and resources constraints are considered. In this problem, resources are staff members that master several skills. Thus, a given number of workers must be assigned to perform each skill required by an activity. Practical applications include the construction of buildings, as well as production and software development planning. We present a column generation approach embedded within a branch-and-price (B&P) procedure that considers a given activity and time-based decomposition approach. Obtained results show that the proposed B&P procedure is able to reach optimal solutions for several small and medium sized instances in an acceptable computational time. Furthermore, some previously open instances were optimally solved.  相似文献   

16.
This paper studies an arc routing problem with capacity constraints and time-dependent service costs. This problem is motivated by winter gritting applications where the “timing” of each intervention is crucial. The exact problem-solving approach reported here first transforms the arc routing problem into an equivalent node routing problem. Then, a column generation scheme is used to solve the latter. The master problem is a classical set covering problem, while the subproblems are time-dependent shortest path problems with resource constraints. These subproblems are solved using an extension of a previously developed algorithm. Computational results are reported on problems derived from a set of classical instances of the vehicle routing problem with time windows.  相似文献   

17.
Probabilistically constrained problems, in which the random variables are finitely distributed, are non-convex in general and hard to solve. The p-efficiency concept has been widely used to develop efficient methods to solve such problems. Those methods require the generation of p-efficient points (pLEPs) and use an enumeration scheme to identify pLEPs. In this paper, we consider a random vector characterized by a finite set of scenarios and generate pLEPs by solving a mixed-integer programming (MIP) problem. We solve this computationally challenging MIP problem with a new mathematical programming framework. It involves solving a series of increasingly tighter outer approximations and employs, as algorithmic techniques, a bundle preprocessing method, strengthening valid inequalities, and a fixing strategy. The method is exact (resp., heuristic) and ensures the generation of pLEPs (resp., quasi pLEPs) if the fixing strategy is not (resp., is) employed, and it can be used to generate multiple pLEPs. To the best of our knowledge, generating a set of pLEPs using an optimization-based approach and developing effective methods for the application of the p-efficiency concept to the random variables described by a finite set of scenarios are novel. We present extensive numerical results that highlight the computational efficiency and effectiveness of the overall framework and of each of the specific algorithmic techniques.  相似文献   

18.
In this paper, we consider a capacitated single-level dynamic lot-sizing problem with sequence-dependent setup costs and times that includes product substitution options. The model is motivated from a real-world production planning problem of a manufacturer of plastic sheets used as an interlayer in car windshields. We develop a mixed-integer programming (MIP) formulation of the problem and devise MIP-based Relax&Fix and Fix&Optimize heuristics. Unlike existing literature, we combine Fix&Optimize with a time decomposition. Also, we develop a specialized substitute decomposition and devise a computation budget allocation scheme for ensuring a uniform, efficient usage of computation time by decompositions and their subproblems. Computational experiments were performed on generated instances whose structure follows that of the considered practical application and which have rather tight production capacities. We found that a Fix&Optimize algorithm with an overlapping time decomposition yielded the best solutions. It outperformed the state-of-the-art approach Relax&Fix and all other tested algorithm variants on the considered class of instances, and returned feasible solutions with neither overtime nor backlogging for all instances. It returned solutions that were on average only 5% worse than those returned by a standard MIP solver after 4 hours and 19% better than those of Relax&Fix.  相似文献   

19.
Working in an extended variable space allows one to develop tight reformulations for mixed integer programs (MIP). However, the size of the extended formulation grows rapidly too large for a direct treatment by a MIP-solver. When the extended formulation stems from a decomposition principle, as typical in practice, a column generation procedure that mimics that for the Dantzig-Wolfe reformulation can be applied to the extended formulation. Pricing subproblem solutions are expressed in the variables of the extended formulation and added to the current restricted version of the extended formulation along with the subproblem constraints that are active for the subproblem solution. Such “column-and-row generation” procedure is reviewed with the goal to analyse the approachʼs potential benefits compared to a standard column generation approach. Numerical experiments highlight a key observation: lifting pricing problem solutions in the space of the extended formulation permits their recombination into new subproblem solutions and results in faster convergence.  相似文献   

20.
In this paper, we investigate the Steiner tree problem with delays, which is a generalized version of the Steiner tree problem applied to multicast routing. For this challenging combinatorial optimization problem, we present an enhanced directed cut-based MIP formulation and an exact solution method based on a branch-and-cut approach. Our computational study reveals that the proposed approach can optimally solve hard dense instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号