首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Optimization》2012,61(7):823-854
In this article, a new mechanism to spread the solutions generated by a multi-objective evolutionary algorithm is proposed. This approach is based on the use of stripes that are applied in objective function space and is independent of the search engine adopted. Additionally, it overcomes some of the drawbacks of other previous proposals such as the ?-dominance method. In order to validate the proposed approach, it is coupled to a multi-objective particle swarm optimizer and its performance is assessed with respect to that of state-of-the-art algorithms, using standard test problems and performance measures taken from the specialized literature. The results indicate that the proposed approach is a viable diversity maintenance mechanism that can be incorporated to any multi-objective metaheuristic used for multi-objective optimization.  相似文献   

2.
This paper presents a new hybrid evolutionary algorithm to solve multi-objective multicast routing problems in telecommunication networks. The algorithm combines simulated annealing based strategies and a genetic local search, aiming at a more flexible and effective exploration and exploitation in the search space of the complex problem to find more non-dominated solutions in the Pareto Front. Due to the complex structure of the multicast tree, crossover and mutation operators have been specifically devised concerning the features and constraints in the problem. A new adaptive mutation probability based on simulated annealing is proposed in the hybrid algorithm to adaptively adjust the mutation rate according to the fitness of the new solution against the average quality of the current population during the evolution procedure. Two simulated annealing based search direction tuning strategies are applied to improve the efficiency and effectiveness of the hybrid evolutionary algorithm. Simulations have been carried out on some benchmark multi-objective multicast routing instances and a large amount of random networks with five real world objectives including cost, delay, link utilisations, average delay and delay variation in telecommunication networks. Experimental results demonstrate that both the simulated annealing based strategies and the genetic local search within the proposed multi-objective algorithm, compared with other multi-objective evolutionary algorithms, can efficiently identify high quality non-dominated solution set for multi-objective multicast routing problems and outperform other conventional multi-objective evolutionary algorithms in the literature.  相似文献   

3.
This paper deals with multi-objective optimization in the case of expensive objective functions. Such a problem arises frequently in engineering applications where the main purpose is to find a set of optimal solutions in a limited global processing time. Several algorithms use linearly combined criteria to use directly mono-objective algorithms. Nevertheless, other algorithms, such as multi-objective evolutionary algorithm (MOEA) and model-based algorithms, propose a strategy based on Pareto dominance to optimize efficiently all criteria. A widely used model-based algorithm for multi-objective optimization is Pareto efficient global optimization (ParEGO). It combines linearly the objective functions with several random weights and maximizes the expected improvement (EI) criterion. However, this algorithm tends to favor parameter values suitable for the reduction of the surrogate model error, rather than finding non-dominated solutions. The contribution of this article is to propose an extension of the ParEGO algorithm for finding the Pareto Front by introducing a double Kriging strategy. Such an innovation allows to calculate a modified EI criterion that jointly accounts for the objective function approximation error and the probability to find Pareto Set solutions. The main feature of the resulting algorithm is to enhance the convergence speed and thus to reduce the total number of function evaluations. This new algorithm is compared against ParEGO and several MOEA algorithms on a standard benchmark problems. Finally, an automotive engineering problem allowing to illustrate the applicability of the proposed approach is given as an example of a real application: the parameter setting of an indirect tire pressure monitoring system.  相似文献   

4.
The search for the best trade-off solutions with respect to several criteria (also called the Pareto set) is the main approach pursued in multi-objective optimization when no additional preferences are associated to the objectives. This problem is known to be compliant with the maximization of the hypervolume (or S-metric), consisting in the Lebesgue measure of the dominated region covered by a set of solutions in the objective space, and bounded by a reference point. While several variants of population-based metaheuristics like evolutionary algorithms address formulations maximizing the hypervolume, the use of gradient-based algorithms for this task has been largely neglected in the literature. Therefore, this paper proposes to solve bi-objective problems by hypervolume maximization through a sequential quadratic programming algorithm. After theoretical developments including the analytical expression of the sensitivities of the hypervolume expressed as functions of the gradient of the objectives, the method is applied to six benchmark test cases, demonstrating the efficiency of the proposed method in comparison with a scalarization of the objectives, and with a state-of-the-art multi-objective genetic algorithm. This method is believed to provide an interesting alternative to metaheuristics when the gradients of the objective functions are available at a limited additional cost, a situation which is encountered in versatile applications, for instance with adjoint methods implemented in computational solid mechanics or fluid dynamics.  相似文献   

5.
为提高已有多目标进化算法在求解复杂多目标优化问题上的收敛性和解集分布性,提出一种基于种群自适应调整的多目标差分进化算法。该算法设计一个种群扩增策略,它在决策空间生成一些新个体帮助搜索更优的非支配解;设计了一个种群收缩策略,它依据对非支配解集的贡献程度淘汰较差的个体以减少计算负荷,并预留一些空间给新的带有种群多样性的扰动个体;引入精英学习策略,防止算法陷入局部收敛。通过典型的多目标优化函数对算法进行测试验证,结果表明所提算法相对于其他算法具有明显的优势,其性能优越,能够在保证良好收敛性的同时,使获得的Pareto最优解集具有更均匀的分布性和更广的覆盖范围,尤其适合于高维复杂多目标优化问题的求解。  相似文献   

6.
Real optimization problems often involve not one, but multiple objectives, usually in conflict. In single-objective optimization there exists a global optimum, while in the multi-objective case no optimal solution is clearly defined but rather a set of optimums, which constitute the so called Pareto-optimal front. Thus, the goal of multi-objective strategies is to generate a set of non-dominated solutions as an approximation to this front. However, most problems of this kind cannot be solved exactly because they have very large and highly complex search spaces. The objective of this work is to compare the performance of a new hybrid method here proposed, with several well-known multi-objective evolutionary algorithms (MOEA). The main attraction of these methods is the integration of selection and diversity maintenance. Since it is very difficult to describe exactly what a good approximation is in terms of a number of criteria, the performance is quantified with adequate metrics that evaluate the proximity to the global Pareto-front. In addition, this work is also one of the few empirical studies that solves three-objective optimization problems using the concept of global Pareto-optimality.  相似文献   

7.
This paper presents the investigation of an evolutionary multi-objective simulated annealing (EMOSA) algorithm with variable neighbourhoods to solve the multi-objective multicast routing problems in telecommunications. The hybrid algorithm aims to carry out a more flexible and adaptive exploration in the complex search space by using features of the variable neighbourhood search to find more non-dominated solutions in the Pareto front. Different neighbourhood strictures have been designed with regard to the set of objectives, aiming to drive the search towards optimising all objectives simultaneously. A large number of simulations have been carried out on benchmark instances and random networks with real world features including cost, delay and link utilisations. Experimental results demonstrate that the proposed EMOSA algorithm with variable neighbourhoods is able to find high-quality non-dominated solutions for the problems tested. In particular, the neighbourhood structures that are specifically designed for each objective significantly improved the performance of the proposed algorithm compared with variants of the algorithm with a single neighbourhood.  相似文献   

8.
针对混流U型拆卸线平衡排序问题,考虑拆卸时间不确定,建立了该问题最小拆卸线平均闲置率、尽早拆卸危害和高需求零部件、最小化平均方向改变次数的多目标优化模型,并提出一种基于分解和动态邻域搜索的混合多目标进化算法(Hybrid Multi-objective Evolutionary Algorithm Based on Decomposition, HMOEA/D)。该算法通过采用弹性任务分配策略、动态邻域结构和动态调整权重以保证解的可行性并搜索得到分布较好的非劣解集。最后,仿真求解实验设计技术(DOE)生成的测试算例,结果表明HMOEA/D较其它算法能得到更接近Pareto最优、分布更好的近似解集。  相似文献   

9.
The receiver operating characteristics (ROC) analysis has gained increasing popularity for analyzing the performance of classifiers. In particular, maximizing the convex hull of a set of classifiers in the ROC space, namely ROCCH maximization, is becoming an increasingly important problem. In this work, a new convex hull-based evolutionary multi-objective algorithm named ETriCM is proposed for evolving neural networks with respect to ROCCH maximization. Specially, convex hull-based sorting with convex hull of individual minima (CH-CHIM-sorting) and extreme area extraction selection (EAE-selection) are proposed as a novel selection operator. Empirical studies on 7 high-dimensional and imbalanced datasets show that ETriCM outperforms various state-of-the-art algorithms including convex hull-based evolutionary multi-objective algorithm (CH-EMOA) and non-dominated sorting genetic algorithm II (NSGA-II).  相似文献   

10.
A multi-objective evolutionary algorithm which can be applied to many nonlinear multi-objective optimization problems is proposed. Its aim is to quickly obtain a fixed size Pareto-front approximation. It adapts ideas from different multi-objective evolutionary algorithms, but also incorporates new devices. In particular, the search in the feasible region is carried out on promising areas (hyperspheres) determined by a radius value, which decreases as the optimization procedure evolves. This mechanism helps to maintain a balance between exploration and exploitation of the search space. Additionally, a new local search method which accelerates the convergence of the population towards the Pareto-front, has been incorporated. It is an extension of the local optimizer SASS and improves a given solution along a search direction (no gradient information is used). Finally, a termination criterion has also been proposed, which stops the algorithm if the distances between the Pareto-front approximations provided by the algorithm in three consecutive iterations are smaller than a given tolerance. To know how far two of those sets are from each other, a modification of the well-known Hausdorff distance is proposed. In order to analyze the algorithm performance, it has been compared to the reference algorithms NSGA-II and SPEA2 and the state-of-the-art algorithms MOEA/D and SMS-EMOA. Several quality indicators have been considered, namely, hypervolume, average distance, additive epsilon indicator, spread and spacing. According to the computational tests performed, the new algorithm, named FEMOEA, outperforms the other algorithms.  相似文献   

11.
Incorporation of a decision maker’s preferences into multi-objective evolutionary algorithms has become a relevant trend during the last decade, and several preference-based evolutionary algorithms have been proposed in the literature. Our research is focused on improvement of a well-known preference-based evolutionary algorithm R-NSGA-II by incorporating a local search strategy based on a single agent stochastic approach. The proposed memetic algorithm has been experimentally evaluated by solving a set of well-known multi-objective optimization benchmark problems. It has been experimentally shown that incorporation of the local search strategy has a positive impact to the quality of the algorithm in the sense of the precision and distribution evenness of approximation.  相似文献   

12.
《Optimization》2012,61(10):1661-1686
ABSTRACT

Optimization over the efficient set of a multi-objective optimization problem is a mathematical model for the problem of selecting a most preferred solution that arises in multiple criteria decision-making to account for trade-offs between objectives within the set of efficient solutions. In this paper, we consider a particular case of this problem, namely that of optimizing a linear function over the image of the efficient set in objective space of a convex multi-objective optimization problem. We present both primal and dual algorithms for this task. The algorithms are based on recent algorithms for solving convex multi-objective optimization problems in objective space with suitable modifications to exploit specific properties of the problem of optimization over the efficient set. We first present the algorithms for the case that the underlying problem is a multi-objective linear programme. We then extend them to be able to solve problems with an underlying convex multi-objective optimization problem. We compare the new algorithms with several state of the art algorithms from the literature on a set of randomly generated instances to demonstrate that they are considerably faster than the competitors.  相似文献   

13.
Multi-objective evolutionary algorithms (MOEAs) are widely considered to have two goals: convergence towards the true Pareto front and maintaining a diverse set of solutions. The primary concern here is with the first goal of convergence, in particular when one or more variables must converge to a constant value. Using a number of well known test problems, the difficulties that are currently impeding convergence are discussed and then a new method is proposed that transforms the decision space using the geometric properties of hyper-spherical inversions to converge towards/onto the true Pareto front. Future extensions of this work and its application to multi-objective optimisation is discussed.  相似文献   

14.
This paper presents a new algorithm for identifying all supported non-dominated vectors (or outcomes) in the objective space, as well as the corresponding efficient solutions in the decision space, for multi-objective integer network flow problems. Identifying the set of supported non-dominated vectors is of the utmost importance for obtaining a first approximation of the whole set of non-dominated vectors. This approximation is crucial, for example, in two-phase methods that first compute the supported non-dominated vectors and then the unsupported non-dominated ones. Our approach is based on a negative-cycle algorithm used in single objective minimum cost flow problems, applied to a sequence of parametric problems. The proposed approach uses the connectedness property of the set of supported non-dominated vectors/efficient solutions to find all integer solutions in maximal non-dominated/efficient facets.  相似文献   

15.
Dynamic optimization and multi-objective optimization have separately gained increasing attention from the research community during the last decade. However, few studies have been reported on dynamic multi-objective optimization (dMO) and scarce effective dMO methods have been proposed. In this paper, we fulfill these gabs by developing new dMO test problems and new effective dMO algorithm. In the newly designed dMO problems, Pareto-optimal decision values (i.e., Pareto-optimal solutions: POS) or both POS and Pareto-optimal objective values (i.e., Pareto-optimal front: POF) change with time. A new multi-strategy ensemble multi-objective evolutionary algorithm (MS-MOEA) is proposed to tackle the challenges of dMO. In MS-MOEA, the convergence speed is accelerated by the new offspring creating mechanism powered by adaptive genetic and differential operators (GDM); a Gaussian mutation operator is employed to cope with premature convergence; a memory like strategy is proposed to achieve better starting population when a change takes place. In order to show the advantages of the proposed algorithm, we experimentally compare MS-MOEA with several algorithms equipped with traditional restart strategy. It is suggested that such a multi-strategy ensemble approach is promising for dealing with dMO problems.  相似文献   

16.
The non-dominate sorting genetic algorithmic-II (NSGA-II) is an effective algorithm for finding Pareto-optimal front for multi-objective optimization problems. To further enhance the advantage of the NSGA-II, this study proposes an evaluative-NSGA-II (E-NSGA-II) in which a novel gene-therapy method incorporates into the crossover operation to retain superior schema patterns in evolutionary population and enhance its solution capability. The merit of each select gene in a crossover chromosome is estimated by exchanging the therapeutic genes in both mating chromosomes and observing their fitness differentiation. Hence, the evaluative crossover operation can generate effective genomes based on the gene merit without explicitly analyzing the solution space. Experiments for nine unconstrained multi-objective benchmarks and four constrained problems show that E-NSGA-II can find Pareto-optimal solutions in all test cases with better convergence and diversity qualities than several existing algorithms.  相似文献   

17.
18.
Simulation optimization has received considerable attention from both simulation researchers and practitioners. In this study, we develop a solution framework which integrates multi-objective evolutionary algorithm (MOEA) with multi-objective computing budget allocation (MOCBA) method for the multi-objective simulation optimization problem. We apply it on a multi-objective aircraft spare parts allocation problem to find a set of non-dominated solutions. The problem has three features: huge search space, multi-objective, and high variability. To address these difficulties, the solution framework employs simulation to estimate the performance, MOEA to search for the more promising designs, and MOCBA algorithm to identify the non-dominated designs and efficiently allocate the simulation budget. Some computational experiments are carried out to test the effectiveness and performance of the proposed solution framework.  相似文献   

19.
Multiplicative programming problems (MPPs) are global optimization problems known to be NP-hard. In this paper, we employ algorithms developed to compute the entire set of nondominated points of multi-objective linear programmes (MOLPs) to solve linear MPPs. First, we improve our own objective space cut and bound algorithm for convex MPPs in the special case of linear MPPs by only solving one linear programme in each iteration, instead of two as the previous version indicates. We call this algorithm, which is based on Benson’s outer approximation algorithm for MOLPs, the primal objective space algorithm. Then, based on the dual variant of Benson’s algorithm, we propose a dual objective space algorithm for solving linear MPPs. The dual algorithm also requires solving only one linear programme in each iteration. We prove the correctness of the dual algorithm and use computational experiments comparing our algorithms to a recent global optimization algorithm for linear MPPs from the literature as well as two general global optimization solvers to demonstrate the superiority of the new algorithms in terms of computation time. Thus, we demonstrate that the use of multi-objective optimization techniques can be beneficial to solve difficult single objective global optimization problems.  相似文献   

20.
An evolutionary artificial immune system for multi-objective optimization   总被引:1,自引:0,他引:1  
In this paper, an evolutionary artificial immune system for multi-objective optimization which combines the global search ability of evolutionary algorithms and immune learning of artificial immune systems is proposed. A new selection strategy is developed based upon the concept of clonal selection principle to maintain the balance between exploration and exploitation. In order to maintain a diverse repertoire of antibodies, an information-theoretic based density preservation mechanism is also presented. In addition, the performances of various multi-objective evolutionary algorithms as well as the effectiveness of the proposed features are examined based upon seven benchmark problems characterized by different difficulties in local optimality, non-uniformity, discontinuity, non-convexity, high-dimensionality and constraints. The comparative study shows the effectiveness of the proposed algorithm, which produces solution sets that are highly competitive in terms of convergence, diversity and distribution. Investigations also demonstrate the contribution and robustness of the proposed features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号