首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于在金纳米棒(AuNRs)-Ag+-多巴胺(DA)体系中,DA快速将Ag+还原为Ag,Ag包裹在AuNRs表面形成核壳状纳米棒(Au@AgNRs),改变了AuNRs周围的电介质环境,导致其纵横比减小、纵向等离子体共振吸收波长带(LPAB)蓝移,同时伴随着溶液的颜色发生显著的变化, 藉此开发了一种快速测定DA的比色法. 方法已成功应用于血清中DA的测定,其结果与荧光法相吻合. 此外,探讨了比色法测定DA的机理.  相似文献   

2.
宋怡  周志华 《化学教育》2006,27(1):59-59
1实验原理1.1有关化学反应含淀粉的NaHSO3溶液与KIO3溶液混合时,KIO3被还原生成I2,HSO3-又很快还原I2成I-,故还不显蓝色,当HSO3-刚消耗完时,生成的微量I2遇淀粉变蓝色。5HSO3- 2IO3-5SO42- I2 3H H2O1.2化学反应速率和反应级数的计算在该氧化还原反应中,通过控制IO3-的浓度,使  相似文献   

3.
通过电化学还原法制备MnO_2纳米线/还原石墨烯复合修饰电极(MnO_2-RGO/GCE),用于多巴胺(DA)的检测。采用扫描电镜和X-射线粉末衍射对不同的修饰电极微观形貌进行了表征,优化了电化学还原条件和测定DA实验条件。此外,还研究DA在裸电极及RGO或MnO_2-RGO修饰电极上的循环伏安响应。MnO_2-RGO/GCE复合修饰电极实现AA、DA和UA氧化峰的有效分离,AA-DA和DA-UA的氧化峰电位差分别为268和128 m V。检测DA的线性范围为0.06~1.0μmol/L和1.0~80μmol/L,检出限为1.0 nmol/L(S/N=3)。制备的MnO_2-RGO/GCE成功用于人血清样品的多巴胺含量分析。  相似文献   

4.
基于半胱氨酸(Cys)中的–SH与Hg2+配合生成稳定的Hg(Cys)2,有效抑制抗坏血酸(Vc)还原Hg2+生成Hg0,进而抑制Hg0与金纳米棒(AuNRs)纵向部位的Au作用而生成金汞齐,导致AuNRs的纵向等离子体共振(Longitudinal surface plasmon resonance,LSPR)吸收峰红移,相应的吸光度(A)增大,并且伴随着溶液颜色的显著变化,同时随着Cys浓度的增大,吸光度A也逐渐增大,据此建立了一种快速  相似文献   

5.
KIO3-I2氧化法同时测定TU,TD和TT   总被引:3,自引:0,他引:3  
以I2和KIO3为氧化剂,建立了同时测定硫脲(TU),二氧化硫脲(TD)和三氧化硫脲(TT)的方法.强酸性条件下,用I2氧化TU;适当酸度条件下,用KIO3氧化TU和TD;强碱性条件下用I2氧化TU,TD和TT.方法已用于合成样品和TD结晶母液的分析.  相似文献   

6.
采用循环伏安法制备了电还原柠嗪酸膜修饰碳糊电极(ECA/CPE),研究了多巴胺(DA)在该修饰电极上的电化学行为。在pH 7.0的磷酸盐缓冲溶液中,ECA/CPE对DA具有明显的电催化作用,且DA呈现出一对准可逆的氧化还原峰,其氧化峰电流与DA浓度在3.7×10-7~8.2×10-5mol/L和1.04×10-4~9.34×10-4mol/L范围内呈良好的线性关系,检出限为1×10-7mol/L(S/N=3)。使用微分脉冲伏安法,DA和尿酸(UA)在ECA/CPE上的氧化峰能完全分离,且峰电流与浓度呈良好的线性关系。该电极可用于盐酸多巴胺针剂中DA的测定以及人体尿液中UA的检测。  相似文献   

7.
采用共沉淀法制备了PEG修饰的Fe3O4纳米粒子,用十二烷基苯磺酸钠(SDBS)水溶液将其分散后修饰在装有磁铁的碳糊电极表面,制成SDBS-PEG-Fe3O4磁性电极。循环伏安(CV)测定结果表明,该修饰电极对多巴胺(DA)有良好的电催化作用,DA的氧化峰电流相当于裸电极的5倍,氧化峰和还原峰的电位差从0.221 V减小到0.044 V,可逆性得到了提高。采用方波伏安法测定DA,其氧化峰电流与浓度分别在5.0×10-7~2.0×10-5mol/L和2.0×10-5~1.0×10-4mol/L范围内呈线性关系,r2分别为0.996 2和0.976 2;检出限(S/N=3)达1.4×10-7mol/L。该修饰电极可基本消除抗坏血酸(AA)和尿酸(UA)等共存物质对DA测定的干扰,用于盐酸多巴胺注射液样品的测定,结果令人满意。  相似文献   

8.
以分子线二苯乙炔为修饰剂和粘合剂制备了一种新型的碳糊电极-碳分子线电极(CMWE),并以其为基底电极采用电化学还原法将石墨烯(GR)沉积到CMWE表面得到电沉积石墨烯修饰碳分子线电极(GR/CMWE)。考察了多巴胺(DA)在该修饰电极上的电化学行为。实验结果显示DA在GR/CMWE上出现了1对峰形良好的氧化还原峰,与裸电极相比,该氧化还原峰的电流增大,峰电位差减小,表明修饰电极对DA的电化学反应有催化作用。在最佳实验条件下峰电流与DA浓度在8.0×10-7~2.0×10-3mol/L范围内呈良好的线性关系,检出限(3σ)为2.55×10-7mol/L。将该电极用于多巴胺注射液样品的检测,结果满意。  相似文献   

9.
采用种子生长法制备金纳米棒(AuNRs)以构建光学传感器,用于Fe3+和Cu2+的高选择性快速可视化检测。在酸性环境中,Fe3+和Cu2+通过与KI溶液反应,将I-氧化成I2。I2刻蚀AuNRs,导致其纵向表面等离子体共振(LSPR)吸收峰蓝移,从而实现对Fe3+和Cu2+的检测。结果表明,反应温度为50℃时,添加0.8 mL 0.1 mol·L-1 HCl、2 mL AuNRs生长液和20 mmol·L-1 KI溶液,与2 mL 500 μmol·L-1 Fe3+或30 μmol·L-1 Cu2+反应25或90 min,可将AuNRs刻蚀至LSPR吸收峰消失。该方法对Fe3+和Cu2+检测具有高选择性和准确性,对于Fe3+、Cu2+共存体系的检测,可通过加入适量F-与Fe3+生成配合物[FeF6]3-完成对Fe3+的化学掩蔽,消除Fe3+的干扰,实现共存体系中Cu2+的准确检测。  相似文献   

10.
研究了I3-与孔雀石绿(MG)间的相互作用,并用于共振散射光谱法测定痕量多巴胺。在pH 4.5的柠檬酸-柠檬酸钠缓冲液中,在聚乙烯醇(PVA)与聚乙二醇辛基苯基醚(OP)存在的条件下,孔雀石绿与I3-通过静电作用力生成络合比为1∶2的离子缔合物MG(I3)2,而多巴胺具有还原性,可将I3-还原成I-,从而导致I3--孔雀石绿体系的共振散射强度下降。据此建立了一种灵敏度高、重现性好、快速测定多巴胺的共振散射光谱新方法。在优化的实验条件下,多巴胺的线性范围为2.0×10-7~4.5×10-6mol.L-1,相关系数(r)为0.999 1;检出限(3S/k)为9.5×10-8mol.L-1。将方法应用于针剂和人血清中多巴胺含量的测定,其加标回收率为100.1%~102.4%,相对标准偏差为0.41%~4.8%。  相似文献   

11.
本文先在Au电极表面自组装硫辛酰胺(T-NH_2),再利用电化学还原的方法将还原氧化石墨烯(ERGO)和纳米金(AuNPs)电沉积到T-NH_2表面,采用循环伏安法考察了电极的电化学性能。实验表明,该修饰电极对多巴胺(DA)具有良好的电催化作用,优化条件下,DA的氧化峰电流与其浓度在6.49×10~(-6)~7.62×10~(-3) mol/L范围内呈良好的线性关系(R=0.996),检出限为2.0×10~(-6) mol/L。  相似文献   

12.
碳纳米管修饰电极对多巴胺和肾上腺素的电分离及同时测定   总被引:17,自引:0,他引:17  
研究了多巴胺 (DA)和肾上腺素 (EP)在多壁碳纳米管 (MWNT)修饰电极上的电化学性质 ,发现该修饰电极对神经递质DA和EP有显著的增敏和电分离作用。还原峰电位差达ΔEp=390mV ,可同时测定DA和EP。DA和EP的还原峰电流与其浓度分别在 2 .0× 10 -6~ 1.0× 10 -3 mol/L和 1.0× 10 -6~ 1.0× 10 -3 mol/L浓度范围内呈良好的线性关系 ;方法的检出限分别为 1× 10 -6mol/L和 5× 10 -7mol/L。由于抗坏血酸 (AA)在MWNT修饰电极上的氧化是不可逆的 ,因此利用还原峰进行测定 ,消除了AA对DA和EP的干扰  相似文献   

13.
本文采用简单的一步化学还原方法合成了粒径均一的纳米Cu2O材料并采用扫描电子显微镜对其形貌进行了表征。研究发现,在p H 7.0的磷酸盐缓冲溶液中,采用纳米Cu2O和Nafion(全氟磺酸离子交换树脂)膜制备的复合修饰电极对多巴胺(DA)呈现出较强的电化学催化作用。优化实验条件后,建立了计时电流法直接测定多巴胺的痕量分析体系。在0.5~270μmol·L-1浓度范围内,多巴胺的阳极峰电流与浓度呈良好的线性关系(r=0.9980),检测限为0.17μmol·L-1,灵敏度为20.44μA m M-1且响应时间不超过3 s。该电极可有效屏蔽抗坏血酸(AA)的干扰,在20倍AA共存下仍能准确地测定DA。对含50μmol·L-1DA的溶液平行测定11次,相对标准偏差为3.3%,表明修饰电极的重现性和稳定性好。将该修饰电极用于模拟样品中DA的测定,结果令人满意。  相似文献   

14.
任旺  张英  李敏娇 《电化学》2011,17(3):343-346
应用电沉积方法制备柠檬酸修饰电极(CA/GC), 差分脉冲法研究多巴胺(DA)和肾上腺素(EP)在该修饰电极上的电化学行为.结果表明, 两样品DA、EP在该电极的还原峰电位差380 mV, 而抗坏血酸(AA)在此电位区无还原峰, 因此可实现该修饰电极对DA和EP的同时检测, 而且高浓度AA不发生干扰.在pH 6.0的磷酸盐缓冲液中, DA和EP还原峰电流与其浓度分别在1.0×10-6 ~ 6.0×10-5 mol•L-1和2.0×10-6 ~ 6.0×10-5 mol•L-1 范围内呈线性关系.CA/GC电极制备简单, 重现性好, 可望用于多巴胺针剂(DA)和肾上腺素针剂(EP)的同时检测  相似文献   

15.
研究了KIO4-Na2SO3-H2SO4 反应体系的复杂动力学,在酸性条件下(pH<3),发现碘电位、Pt电极电位和pH在封闭体系中显示单峰振荡以及半封闭体系和开放体系中的振荡现象.振荡现象受[Na2SO3]0/[KIO4]0比值以及体系的酸度影响.实验结果表明该体系可能为I2生成和I2消耗所驱动的振荡反应;所拟的反应机理解释了体系所显示的复杂动力学现象.  相似文献   

16.
L-半胱氨酸自组装电极循环伏安法测定多巴胺   总被引:1,自引:0,他引:1  
建立了痕量多巴胺(DA)电化学分析方法.在pH 7.6的0.2 mol/L Na2HPO4-NaH2PO4 0.1 mol/L KCl底液中,L-半胱氨酸(L-Cys)自组装金电极对多巴胺有明显的电催化氧化作用,考察了该电极作为DA传感器的实验条件.结果表明:DA在L-Cys/Au电极上的氧化峰电流与多巴胺的浓度在一定范围内成线性关系,线性范围为6.7×10-5~4.6×10-3 mol/L,检出限为8.4×10-6 mol/L,平行测定8次,相对标准偏差为3.2%,用于盐酸多巴胺注射液中DA的测定,回收率为94%~96%.  相似文献   

17.
采用种子生长法制备金纳米棒(AuNRs)以构建光学传感器,用于 Fe3+和 Cu2+的高选择性快速可视化检测。在酸性环境中,Fe3+和 Cu2+通过与 KI溶液反应,将 I-氧化成 I2。I2刻蚀 AuNRs,导致其纵向表面等离子体共振(LSPR)吸收峰蓝移,从而实现对Fe3+和Cu2+的检测。结果表明,反应温度为50℃时,添加0.8 mL 0.1 mol·L-1 HCl、2 mL AuNRs生长液和20 mmol·L-1 KI溶液,与 2 mL 500 μmol·L-1 Fe3+或 30 μmol·L-1 Cu2+反应 25或 90 min,可将 AuNRs刻蚀至 LSPR 吸收峰消失。该方法对 Fe3+和 Cu2+检测具有高选择性和准确性,对于 Fe3+、Cu2+共存体系的检测,可通过加入适量 F-与 Fe3+生成配合物[FeF6]3-完成对 Fe3+的化学掩蔽,消除Fe3+的干扰,实现共存体系中Cu2+的准确检测。  相似文献   

18.
通过3-巯丙基三乙氧基硅烷(METMS)将氧化石墨烯(GO)固载到玻碳电极(GCE)表面, 用电化学方法还原GO制备石墨烯修饰玻碳电极(rGO-METMS-GCE). 利用傅里叶变换红外光谱(FTIR)、 拉曼光谱(Raman)、 扫描电子显微镜(SEM)和原子力显微镜(AFM)等技术对GO和rGO-METMS-GCE的结构和表面形貌进行表征. 采用循环伏安(CV)和差分脉冲溶出伏安(DPV)法研究了rGO-METMS-GCE对多巴胺(DA)的电催化氧化性能及反应机理. 结果表明, 与裸GCE相比, DA在rGO-METMS-GCE电极上的氧化还原峰电流(ipaipc) 增大4倍, 氧化峰电位负移106 mV, 氧化峰与还原峰电位差(ΔEp)从202 mV降低至66 mV, DA电化学氧化可逆性明显改善, 表明rGO-METMS-GCE对DA电化学氧化具有显著电催化作用. DA在rGO-METMS-GCE上的反应机理为单电子转移过程.  相似文献   

19.
汪海燕  柳鹏  王晔  金葆康 《电化学》2007,13(2):127-131
在裸金电极上自组装4,4-二甲基联苯硫醇(MTP)膜(MTP/AuSAMs),再电还原氯金酸溶液修饰纳米金,得纳米金双巯基修饰金电极(NG/MTP/Au).研究了多巴胺(DA)和抗坏血酸(AA)在NG/MTP/Au上的电化学行为,发现该修饰电极对DA、AA的氧化具有良好的电催化作用,多巴胺(DA)和抗坏血酸(AA)的氧化峰电位差达到155mV,可以实现对此二组分混合溶液的选择性测定.差分脉冲法测得的峰电流与DA、AA浓度分别在5.0×10-7~1×10-4mol.L-1和3.5×10-6~1.0×10-3mol.L-1范围内呈线性关系,检测限(3σ)分别为1.5×10-7mol.L-1和1.2×10-6mol.L-1,相关系数0.998.  相似文献   

20.
借助于简单可控的滴涂成膜和在线电聚合方法,将溴酚蓝和石墨烯修饰到玻碳电极表面,制备出聚溴酚蓝(PBPB)-石墨烯(GO)复合膜修饰玻碳电极(GCE),即多巴胺(DA)电化学传感器。研究表明,PBPB-GO复合膜对DA的电化学还原具有良好的催化作用。电化学交流阻抗表征结果显示,相对于裸GCE和PBPB/GCE,PBPB/GO/GCE具有较低的表面电阻,有利于加快电子传递;扫描电镜表征结果显示,PBPB/GO/GCE具有疏松多孔的结构,有利于对DA的富集。对DA在PBPB/GO/GCE上的电化学传感机理进行考察,结果显示其电化学反应是一个受吸附控制且有质子参与的过程。对DA的检测条件进行优化,溴酚蓝的最佳聚合圈数为15,石墨烯(2 mg/m L)的最佳修饰量为2μL,最佳检测底液为0.1 mol/L Na2HPO4-Na H2PO4缓冲溶液(p H 6.0)。在最优检测条件下,DA的检测线性范围为5.0×10-8~2.0×10-4mol/L,检出限低至1.0×10-8mol/L。DA电化学传感器具有良好的稳定性和重现性,灵敏度高,选择性好。将该传感器用于多巴胺注射液中DA含量的测定,结果满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号