首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Carnitine acetyltransferase was purified from the citric acid producingA. niger mycelium with a protein band showing a relative molecular weight of 77,000 and a pH optimum of 7.3. TheK m values for the purified enzyme for acetyl-CoA and for carnitine were 0.1 mM and 1 mM, respectively. Carnitine acetyltransferase was located both in the mitochondria and in the cytosol. Both mitochondrial and cytosolic enzyme were purified using ammonium sulfate precipitation, Mono Q and Superose 12 separation. Regarding the localization, except for maximum velocity, there were no differences observed in substrate specificity and inhibition. Inhibition of the enzyme with micromolar concentrations of Cu2+ could contribute to a greater citric acid biosynthesis. Carnitine acetyltransferase can be considered as an enzyme necessary for the transport of acetyl groups through mitochondrial membrane in both directions.  相似文献   

2.
Successful deployment of a bioethanol process depends on the integration of technologies that can be economically commercialized. Pretreatment and fermentation operations of the traditional enzymatic bioethanol-production process constitute the largest portion of the capital and operating costs. Cost reduction in these areas, through improved reactions and reduced capital, will improve the economic feasibility of a large-scale plant. A technoeconomic model was developed using the ASPEN PlusTN modeling software package. This model in cluded a two-stage pretreatment operation with a co-current first stage and countercurrent second stage, a lignin adsorption unit, and a cofermentation unit. Data from kinetic modeling of the pretreatment reactions, verified by bench-scale experiments, were used to create the ASPEN Plus base model. Results from the initial pretreatment and fermentation yields of the two-stage system correlated well to the performance targets established by the model. The ASPEN Plus model determined mass and energy-balance information, which was supplied, to an economic module to determine the required selling price of the ethanol. Several pretreatment process variables such as glucose yield, liquid: solid ratio, additional pretreatment stages, and lignin adsorption were varied to determine which parameters had the greatest effect on the process economics. Optimized values for these key variables became target values for the bench-scale research, either to achieve oridentify as potential obstacles in the future commercialization process. Results from this modeling and experimentation sequence have led to the design of an advanced two-stage engineering-scale reactor for a dilute-acid hydrolysis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号