首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High resolution spectra of the B2E-X2A1 transitions of CaBH4 and SrBH4 have been recorded using laser excitation spectroscopy in a laser ablation/molecular jet source. Because of rotational cooling in the molecular jet and nuclear spin statistics, transitions arising from only the K'=1<--K"=0, K'=2<--K"=1, and K'=0<--K"=1 subbands have been observed. For each molecule, an analysis of the data using 2E and 2A1 symmetric top Hamiltonians yielded rotational, spin-orbit, and spin-rotation parameters for the observed states. For both molecules the rotational constants compare well with those calculated for a tridentate borohydride structure. A large reduction in the spin-orbit splitting and in the metal-ligand separation for each molecule indicates an increase in the amount of d atomic orbital character in the first excited 2E states of the monoborohydrides as compared to the monomethyl derivatives. For each molecule no evidence of internal rotation of the BH4- ligand was found. A change in the magnitude and sign of the spin-rotation constant epsilon1 confirms an energy reordering of the first excited 2E and 2A1 states in both CaBH4 and SrBH4 as compared to CaCH3 and SrCH3. The data also suggest that the B2E1/2 rotational energy levels of CaBH4 may be perturbed by a vibronic component of the A2A1 state.  相似文献   

2.
High-resolution laser excitation spectroscopy has been used to record the A (2)E-X (2)A(1) electronic transition of SrCH(3) in a laser ablation/molecular jet source. Transitions arising from the K(')=1<--K(")=0, K(')=0<--K(")=1, and K(')=2<--K(")=1 subbands have been observed and assigned. The data were modeled with (2)E and (2)A(1) symmetric top Hamiltonian matrices in a Hund's case (a) basis, using a least squares fitting program. Rotational and fine structure parameters for the A (2)E state were determined. A comparison of the spin-orbit energy separation in the A (2)E state to other strontium containing free radicals showed that the Jahn-Teller effect is negligible. The spin-rotation constants for the A (2)E state were calculated using the pure precession model and were found to be in good agreement with the experimentally determined parameters. These calculations suggest that the A (2)E state of SrCH(3) is not entirely of p orbital character. The rotational constants were used to estimate the structural parameters of SrCH(3) in the A (2)E state. The strontium-carbon bond length was found to decrease by approximately 0.006 A, and the hydrogen-carbon-hydrogen bond angle opened by approximately 0.8 degrees compared to the X (2)A(1) state, similar to the geometry changes observed for CaCH(3).  相似文献   

3.
A high resolution Fourier transform spectrometry analysis of the rotational structure of the 2(0)1 absorption bands of the 3A2<--X1A1 Wulf transition for the isotopomers 16O3 and 18O3 of the ozone molecule is presented. These bands are very intense compared to the 0(0)0 bands but the predissociation is so strong that the main sub-bands appear as continuous contours. Isolated lines and band contour methods are used together to analyse these two rovibrational bands. The lines corresponding to the F2 component are generally the most intense and isolated. Our data sets for the (0 1 0) level of the 3A2 state are limited to about 102 weakly or unperturbed rotational lines for the 2(0)1 of 16O3 in the range 9620-10,140 cm(-1) and 123 weakly or unperturbed rotational lines for the same band of 18O3. Using for each of them the well-defined ground state parameters, we obtained a standard deviation of about 0.035 cm(-1) in the fit to the lines for 16O3 and 0.027 cm(-1) in the case of 18O3. The rotational constants A, B and C, the three rotational distortion terms deltaK, deltaJK and deltaJ, the spin-rotation constants a0, a and b have been successfully calculated for 16O3 and 18O3 while the spin-spin constants were fixed to their respective values obtained for the origin bands. As is the case for the 0(0)0 band, we have a partial agreement with the isotopic laws for the rotational constants. The geometrical parameters of the (0 1 0) level of 3A2 state for the two isotopomers are close, r = 1.357 A, theta = 100.7 degrees for 18O3 and r = 1.352 A and theta = 100.0 degrees for 16O3. The origin of the 2(0)1 band of 18O3 is red shifted by 7.06(4) cm(-1) with respect to 16O3 2(0)1 band and the two bending mode quanta are, respectively, 528.99(9) and 501.34(7) cm(-1). A preliminary qualitative analysis of the predissociation is given in the particular case of the F2 spin component of 16O3 for 0(0)0 and 2(0)1 bands by the measurement of shifts of positions of some rovibrational levels and the evolution of predissociation broadenings in (Q)Q2 branches. We justify the existence of perturbations in the rovibrational levels of 3A2 state through different interaction types: with the dissociation continuum of the same electronic state or with high vibrational repulsive or weakly bound levels of the ground state.  相似文献   

4.
The J = 1-0 transitions of (12)CH(+), (13)CH(+), and (12)CD(+) in the ground X(1)Σ(+) state have been unambiguously identified by using an extended negative glow discharge as an ion source. Unexpectedly large Zeeman splittings have been observed, and the (13)CH(+) line exhibits nuclear spin-rotation hyperfine splitting in addition to the Zeeman effect. The nuclear spin-rotation coupling constant was determined to be 1.087(50) MHz for the (13)C species. The rotational g-factor is found to be -7.65(29), in terms of the nuclear magneton for the J = 1 and v = 0 state, more than an order of magnitude larger than values for typical diamagnetic closed shell molecules. These larger than usual magnetic interactions for a (1)Σ molecule are caused by the large rotational energy and relatively small excitation energy of the excited A(1)Π state. The effective g-factor and the spin-rotation coupling constant obtained by ab initio calculations agree very well with the experimentally determined values.  相似文献   

5.
Laser-induced fluorescence and wavelength resolved emission spectra of the C ?(2)B(2)-X? (2)A(1) band system of the gas phase aluminum dicarbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high-pressure argon. The three vibrational frequencies of T-shaped AlC(2) have been determined in both the combining states along with several of the anharmonicity constants. The 0(0)(0) band has been recorded with high resolution and rotationally analyzed. The spectrum is complicated by partially resolved spin-rotation and aluminum hyperfine splittings. Where necessary, we have fixed the spin-rotation constants used in the rotational analysis at the values predicted by density functional theory. The derived molecular structures are: r(0)(')(C-C) = 1.271(2) ?, r(0)(')(Al-C) = 1.926(1) ?, θ(")(C-Al-C) = 38.5(2)°, r(0)(')(C-C) = 1.323(2) ?, r(0)(')(Al-C) = 1.934(1) ?, and θ(')(C-Al-C) = 40.0(2)°. Unlike SiC(2), aluminum dicarbide shows no spectroscopic evidence of facile isomerization to the linear structure in the ground electronic state.  相似文献   

6.
The hyperfine structures of the 2 (3)Sigma(g) (+), 3 (3)Sigma(g) (+), and 4 (3)Sigma(g) (+) states of Na(2) have been resolved with sub-Doppler continuous wave perturbation facilitated optical-optical double resonance spectroscopy via A (1)Sigma(u) (+) approximately b (3)Pi(u) mixed intermediate levels. The hyperfine patterns of these three states are similar. The hyperfine splittings of the low rotational levels are all very close to the case b(betaS) limit. As the rotational quantum number increases, the hyperfine splittings become more complicated and the coupling cases become intermediate between cases b(betaS) and b(beta J) due to spin-rotation interaction. We present a detailed analysis of the hyperfine structures of these three (3)Sigma(g) (+) states, employing both case b(betaS) and b(beta J) coupling basis sets. The results show that the hyperfine splittings of the (3)Sigma(g) (+) states are mainly due to the Fermi-contact interaction. The Fermi contact constants for the two d sigma Rydberg states, the 2 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+), are 245+/-5 MHz and 225+/-5 MHz, respectively, while the Fermi contact constant of the s sigma 3 (3)Sigma(g) (+) Rydberg state is 210+/-5 MHz. The diagonal spin-spin and spin-rotation constants, and nuclear spin-electronic spin dipolar interaction parameters of the 3 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+) states are also obtained.  相似文献   

7.
Rotationally resolved laser induced fluorescence and stimulated emission pumping A?(2)A(1)-X?(2)E spectra, along with pure rotational spectra in the 153-263 GHz region within the E(3/2) component of the ground state in asymmetrically deuterated methoxy radicals CH(2)DO and CHD(2)O have been observed. The combined data set allows for the direct measurement with high precision of the energy separation between the E(1/2) and E(3/2) components of the ground state and the energy separation between the parity stacks in the E(3/2) component of the ground state. The experimentally observed frequencies in both isotopologues are fit to an effective rotational Hamiltonian accounting for rotational and spin-rotational effects arising in a near-prolate asymmetric top molecule with dynamic Jahn-Teller distortion. Isotopic dependencies for the molecular parameters have been successfully implemented to aid the analysis of these very complex spectra. The analysis of the first and second order contributions to the effective values of molecular parameters has been extended to elucidate the physical significance of resulting molecular parameters. Comparisons of measured parameters, e.g., spin-orbit coupling, rotational and spin-rotation constants, are made among the 5 methoxy isotopologues for which data is now available. Comparisons of experimental results, including the derived geometric structure at both the C(3v) conical intersection and at the Jahn-Teller distorted minima, are made with quantum chemistry calculations.  相似文献   

8.
Fluorescence-dip infrared spectroscopy, an UV-IR double-resonance technique, is employed to characterize the line positions, linewidths, and corresponding lifetimes of highly predissociative rovibrational levels of the excited A (2)Sigma(+) electronic state of the OH radical. Various lines of the 4 <--2 overtone transition in the excited A (2)Sigma(+) state are observed, from which the rotational, centrifugal distortion, and spin-rotation constants for the A (2)Sigma(+) (v = 4) state are determined, along with the vibrational frequency for the overtone transition. Homogeneous linewidths of 0.23-0.31 cm(-1) full width at half maximum are extracted from the line profiles, demonstrating that the N = 0 to 7 rotational levels of the OH A (2)Sigma(+) (v = 4) state undergo rapid predissociation with lifetimes of < or =23 ps. The experimental linewidths are in near quantitative agreement with first-principles theoretical predictions.  相似文献   

9.
The pure rotational spectrum of the ZnCCH (X?(2)Σ(+)) radical has been measured using Fourier transform microwave (FTMW) and millimeter direct-absorption methods in the frequency range of 7-260 GHz. This work is the first study of ZnCCH by any type of spectroscopic technique. In the FTMW system, the radical was synthesized in a mixture of zinc vapor and 0.05% acetylene in argon, using a discharge assisted laser ablation source. In the millimeter-wave spectrometer, the molecule was created from the reaction of zinc vapor, produced in a Broida-type oven, with pure acetylene in a dc discharge. Thirteen rotational transitions were recorded for the main species, (64)ZnCCH, and between 4 and 10 for the (66)ZnCCH, (68)ZnCCH, (64)ZnCCD, and (64)Zn(13)C(13)CH isotopologues. The fine structure doublets were observed in all the data, and in the FTMW spectra, hydrogen, deuterium, and carbon-13 hyperfine splittings were resolved. The data have been analyzed with a (2)Σ Hamiltonian, and rotational, spin-rotation, and H, D, and (13)C hyperfine parameters have been established for this radical. From the rotational constants, an r(m) ((1)) structure was determined with r(Zn-C) = 1.9083 A?, r(C-C) = 1.2313 A?, and r(C-H) = 1.0508 A?. The geometry suggests that ZnCCH is primarily a covalent species with the zinc atom singly bonded to the C≡C-H moiety. This result is consistent with the hyperfine parameters, which suggest that the unpaired electron is localized on the zinc nucleus. The spin-rotation constant indicates that an excited (2)Π state may exist ~19,000 cm(-1) in energy above the ground state.  相似文献   

10.
Pure rotational spectra of the sodium chloride-water complexes, NaCl-(H(2)O)(n) (n = 1, 2, and 3), in the vibronic ground state have been observed by a Fourier- transform microwave spectrometer coupled with a laser ablation source. The (37)Cl-isotopic species and a few deuterated species have also been observed. From the analyses of the spectra, the rotational constants, the centrifugal distortion constants, and the nuclear quadrupole coupling constants of the Na and Cl nuclei were determined precisely for all the species. The molecular structures of NaCl-(H(2)O)(n) were determined using the rotational constants and the molecular symmetry. The charge distributions around Na and Cl nuclei in NaCl are dramatically changed by the complex formation with H(2)O. Prominent dependences of the bond lengths r(Na-Cl) on the number of H(2)O were also observed. By a comparison with results of theoretical studies, it is shown that the structure of NaCl-(H(2)O)(3) is approaching to that of the contact ion-pair, which is considered to be an intermediate species in the incipient solvation process.  相似文献   

11.
Hyperfine structures arising from the couplings of the nuclear spin angular momentum of (17)O (I = 5/2) with the end over end rotation of several metal-containing diatomic monoxides have been observed using a Fourier transform microwave spectrometer. The molecules have been produced by reacting (17)O(2) with laser ablated metal atoms. The oxygen-17 nuclear quadrupole coupling constants have been determined for the title molecules and are interpreted in terms of a simple Townes-Dailey model. Also, the oxygen-17 nuclear spin-rotation constants have been determined and used to calculate the oxygen-17 shieldings for each molecule.  相似文献   

12.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

13.
A combined experimental and theoretical study of the charge-transfer complex [Ar-N(2)](+) is presented. Nearly 50 transitions split by spin-rotation interaction have been observed by means of infrared diode laser absorption spectroscopy in a supersonic planar plasma expansion. The band origin is at 2272.2563(18) cm(-1) and rotational constants in the ground and vibrationally (NN-stretch) excited state amount to 0.128701(8) cm(-1) and 0.128203(8) cm(-1), respectively. The interpretation of the data in terms of a charge switch upon complexation is supported by new ab initio calculations. The best estimate for a linear equilibrium structure yields R(e)(NN)=1.102 A and R(e)(Ar-N)=2.190 A. Predictions for molecular parameters not directly available from the experimental results are presented as well. Furthermore, the electronic structure and Ar-N bonding mechanism of [Ar-N(2)](+) have been analyzed in detail. The Ar-N bond is a textbook example of a classical 2-center-3-electron bond.  相似文献   

14.
The pure rotational spectrum of CuCCH in its ground electronic state (X? (1)Σ(+)) has been measured in the frequency range of 7-305 GHz using Fourier transform microwave (FTMW) and direct absorption millimeter/submillimeter methods. This work is the first spectroscopic study of CuCCH, a model system for copper acetylides. The molecule was synthesized using a new technique, discharge assisted laser ablation spectroscopy (DALAS). Four to five rotational transitions were measured for this species in six isotopologues ((63)CuCCH, (65)CuCCH, (63)Cu(13)CCH, (63)CuC(13)CH, (63)Cu(13)C(13)CH, and (63)CuCCD); hyperfine interactions arising from the copper nucleus were resolved, as well as smaller splittings in CuCCD due to deuterium quadrupole coupling. Five rotational transitions were also recorded in the millimeter region for (63)CuCCH and (65)CuCCH, using a Broida oven source. The combined FTMW and millimeter spectra were analyzed with an effective Hamiltonian, and rotational, electric quadrupole (Cu and D) and copper nuclear spin-rotation constants were determined. From the rotational constants, an r(m)(2) structure for CuCCH was established, with r(Cu-C) = 1.8177(6)?A?, r(C-C) = 1.2174(6)?A?, and r(C-H) = 1.046(2)?A?. The geometry suggests that CuCCH is primarily a covalent species with the copper atom singly bonded to the C≡C-H moiety. The copper quadrupole constant indicates that the bonding orbital of this atom may be sp hybridized. The DALAS technique promises to be fruitful in the study of other small, metal-containing molecules of chemical interest.  相似文献   

15.
A combined microwave, infrared, and computational investigation of CHBrF(2) is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for CH(79)BrF(2) and CH(81)BrF(2) provided rotational and centrifugal-distortion constants up to the sextic terms as well as the hyperfine parameters (quadrupole-coupling and spin-rotation interaction constants) of the bromine nucleus. The determination of the latter was made possible by recording of spectra at sub-Doppler resolution, achieved by means of the Lamb-dip technique, and supporting the spectra analysis by high-level quantum chemical calculations at the coupled-cluster level. In this context, the importance of relativistic effects, which are of the order of 6.5% and included in the present work using second-order direct perturbation theory, needs to be emphasized for accurate predictions of the bromine quadrupole-coupling constants. The infrared measurements focused on the ν(4) fundamental band of CH(79)BrF(2). Fourier transform investigations using a synchrotron radiation source provided the necessary resolution for the observation and analysis of the rotational structure. The spectroscopic parameters of the v(4) = 1 state were found to be close to those of the vibrational ground state, indicating that the ν(4) band is essentially unaffected by perturbations.  相似文献   

16.
The absorption spectrum of ozone was recorded at low temperatures (down to -135 degrees C) by high resolution Fourier transform spectrometry and intra cavity laser absorption spectroscopy (ICLAS) near 10,400 cm-1. A preliminary analysis of the rotational structure of the absorption spectra of 16O3 and 18O3 shows that this spectral region corresponds to a superposition of two different electronic transitions, one with a very broad rotational structure, showing for the first time the asymmetric stretching frequency mode nu3 of the electronic state 3A2, the other formed by a completely diffuse band, probably the 2(1)(0) band of a new transition due to the triplet electronic state 3B2. Predissociation effects induce large broadening of the rotational lines for the transition centered at 10,473 cm-1 identified as the 3(2)(0) band of the 3A2 <-- X1A1 electronic transition. The rotational structure cannot be analyzed directly but instead the band contour method was used to confirm the symmetry of the transition and to estimate the spectroscopic constants for the 16O isotopomer. The origin of the band is at 10,473 +/- 3 cm-1 and the value of the 16O3(3A2) antisymmetric stretching frequency mode is equal to 460 +/- 2 cm-1. We believe that the diffuse band is due to the 3B2 state and is located at about 10,363 +/- 3 cm-1 for 16O3 and 10,354 +/- 3 cm-1 for 18O3. The isotopic rules confirm the different results obtained for 18O3 and 16O3.  相似文献   

17.
The pure rotational spectra of 41 isotopic species of PbSe and PbTe have been measured in their X 1Sigma+ electronic state with a resonator pulsed-jet Fourier transform microwave spectrometer. The molecules were prepared by laser ablation of suitable target rods and stabilised in supersonic jets of noble gas. Global multi-isotopologue analyses yielded spectroscopic Dunham parameters Y01, Y11, Y21, Y31, Y02, and Y12 for both species, as well as effective Born-Oppenheimer breakdown (BOB) coefficients delta01 for Pb, Se and Te. Unusual large values of the BOB parameters for Pb have been rationalized in terms of finite nuclear size (field shift) effect. A direct fit of the same data sets to an appropriate radial Hamiltonian yielded analytic potential energy functions and BOB radial functions for the X 1Sigma+ electronic state of both PbSe and PbTe. Additionally, the magnetic hyperfine interactions produced by the uneven mass number A nuclei 207Pb, 77Se, 123Te, and 125Te were observed, yielding first determinations of the corresponding nuclear spin-rotation coupling constants.  相似文献   

18.
The vinyl radical in the ground vibronic state produced in a supersonic jet expansion by 193 nm excimer laser photolysis of vinyl bromide was investigated by millimeter-wave spectroscopy. Due to the proton tunneling, the ground state is split into two components, of which the lower and higher ones are denoted as 0+ and 0-, respectively. Eight pure rotational transitions with Ka = 0 and 1 obeying a-type selection rules were observed for each of the 0+ and 0- states in the frequency region of 60-250 GHz. Tunneling-rotation transitions connecting the lower (0+) and upper (0-) components of the tunneling doublet, obeying b-type selection rules, were also observed in the frequency region of 190-310 GHz, including three R- and six Q-branch transitions. The observed frequencies of the pure rotational and tunneling-rotation transitions were analyzed by using an effective Hamiltonian in which the coupling between the 0+ and 0- states was taken into account. A set of precise molecular constants was obtained. Among others, the proton tunneling splitting in the ground state was determined to be DeltaE0 = 16,272(2) MHz. The potential barrier height was estimated to be 1580 cm(-1) from the proton tunneling splitting, by an analysis using a detailed one-dimensional model. The spin-rotation and hyperfine interaction constants were also determined for the 0+ and 0- states together with the off-diagonal interaction constants connecting the 0+ and 0- states, epsilonab + epsilonba for the spin-rotation interaction and Tab for the hyperfine interaction of the alpha (CH) proton. The hyperfine interaction constants, due to the alpha proton and the beta (CH2) protons, are consistent with those derived from electron spin resonance studies.  相似文献   

19.
The (j', Omega', epsilon') dependent differential collision cross sections of D2 with fully state selected (j = 12, Omega = 12, epsilon = -1) NO have been determined at a collision energy of about 550 cm(-1). The collisionally excited NO molecules are detected by (1+1') resonance enhanced multiphoton ionization combined using velocity-mapped ion-imaging. The results are compared to He-NO scattering results and tend to be more forward scattered for the same final rotational state. Both for collisions of the atomic He and the molecular D2 with NO, scattering into pairs of rotational states with the same value of n = j' - epsilon epsilon'2 yields the same angular dependence of the cross section. This "parity propensity rule" remains present both for spin-orbit conserving and spin-orbit changing transitions. The maxima in the differential cross sections-that reflect rotational rainbows-have been extracted from the D2-NO and the He-NO differential cross sections. These maxima are found to be distinct for odd and even parity pair number n. Rainbow positions of parity changing transitions (n is odd) occur at larger scattering angles than those of parity conserving transitions (n is even). Parity conserving transitions exhibit-from a classical point of view-a larger effective eccentricity of the shell. No rainbow doubling due to collisions onto either the N-end or the O-end was observed. From a classical point of view the presence of a double rainbow is expected. Rotational excitation of the D2 molecules has not been observed.  相似文献   

20.
CCl2(A1B1)被O2及取代甲烷类分子猝灭的动力学研究   总被引:2,自引:0,他引:2  
对CCl4/Ar混合气体放电产生CCl2自由基,再用541.52nm激光将电子基态CCl2激发到激发态A^1B1(0,4,0)振动态k=0能级上,通过检测 激发态CCl2时间分辨荧光信号,测得室温下CCl2(A^1B1)被O2,CF4,CF2Cl,CH3NO2,CH2Br2等分子猝灭的实验结果,用改进的三能级模型分析处理实验数据,获得态分辨速常数KA和Ka值,并对实验结果进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号