首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过活性聚苯乙烯(PS)和聚异戊二烯(PI)负离子与含1,1-二苯基乙烯(DPE)侧基的聚苯乙烯(PSe)的偶联反应合成了结构明确的每个重复单元含一条侧链的梳形支化聚合物,其中,PSe是通过Sc单体的原子转移自由基聚合(ATRP)和Wittig反应制得的.用IR1、H-NMR、GPC和SLS等测试方法对所得梳形支化聚合物进行了详细表征,讨论了活性负离子链与PSe的DPE基团的配比对接枝率的影响.结果表明,活性负离子链与DPE基团的偶联反应是高效的,可以通过调节活性负离子链与DPE基团的加料比来控制接枝率.另外,还讨论了PSe和活性负离子链的分子量对接枝率的影响.结果表明,在实验范围内当活性负离子链过量时可获得几乎定量的接枝率.  相似文献   

2.
The 1,1‐diphenylethene (DPE) controlled radical polymerization of methyl methacrylate was performed at 80 °C by using AIBN as an initiator and DPE as a control agent. It was found that the molecular weight of polymer remained constant with monomer conversion throughout the polymerization regardless of the amounts of DPE and initiator in formulation. To understand the result of constant molecular weight of living polymers in DPE controlled radical polymerization, a living kinetic model was established in this research to evaluate all the rate constants involved in the DPE mechanism. The rate constant k2, corresponding to the reactivation reaction of the DPE capped dormant chains, was found to be very small at 80 °C (1 × 10?5 s?1), that accounted for the result of constant molecular weight of polymers throughout the polymerization, analogous to a traditional free radical polymerization system that polymer chains were terminated by chain transfer. The polydispersity index (PDI) of living polymers was well controlled <1.5. The low PDI of obtained living polymers was due to the fact that the rate of growing chains capped by DPE was comparable with the rate of propagation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

3.
Block polymerization of 1,1-diethylsilacyclobutane with styrene derivatives and methacrylate derivatives was investigated. Sequential addition of styrene to a living poly(1,1-diethylsilabutane), which was prepared from phenyllithium and 1,1-diethylsilacyclobutane in THF–hexane at −48°C, gave poly(1,1-diethylsilabutane)-b-polystyrene. Similarly, addition of 4-(tert-butyldimethylsiloxy)styrene to the living poly(1,1-diethylsilabutane) provided poly(1,1-diethylsilabutane)-b-poly(4-(tert-butyldimethylsiloxy)styrene). Poly(1,1-diethylsilabutane)-b-poly(methyl methacrylate) was obtained by treatment of living poly(1,1-diethylsilabutane) with 1,1-diphenylethylene followed by an addition of methyl methacrylate. Poly(1,1-diethylsilabutane)-b-poly(2-(tert-butyldimethylsiloxy)ethyl methacrylate) was also synthesized by adding 2-(tert-butyldimethylsiloxy)ethyl methacrylate to the living poly(1,1-diethylsilabutane) which was end-capped with 1,1-diphenylethylene in the presence of lithium chloride. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2699–2706, 1998  相似文献   

4.
The anionic polymerization of allyl methacrylate was carried out in tetrahydrofuran, both in the presence and in the absence of LiCl, with a variety of initiators, at various temperatures. It was found that (1,1-diphenylhexyl)lithium and the living oligomers of methyl methacrylate and tert-butyl methacrylate are suitable initiators for the anionic polymerization of this monomer. The temperature should be below −30°C, even in the presence of LiCl, for the living polymerization to occur. When the polymerization proceeded at −60°C, in the presence of LiCl, with (1,1-diphenylhexyl)-lithium as initiator, the number-average molecular weight of the polymer was directly proportional to the monomer conversion and monodisperse poly(allyl methacrylate)s with high molecular weights were obtained. 1H-NMR and FT-IR indicated that the α CC double bond of the monomer was selectively polymerized and that the allyl group remained unreacted. The prepared poly(allyl methacrylate) is a functional polymer since it contains a reactive CC double bond on each repeating unit. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2901–2906, 1997  相似文献   

5.
Electrically conductive composite surfaces were prepared by a diffusion-controlled in situ polymerization of pyrrole in the surface layer of sulfonated polystyrene ionomer films. Premolded films of the ionomer sulfonic acid derivatives were sequentially immersed in aqueous solutions of pyrrole and FeCl3, and polymerization occurred only where both the monomer and the oxidant were present. The penetration of the polypyrrole (PPy) into the film was controlled by varying the immersion time in the monomer solution. The amount of PPy produced depended on the immersion time of the film in the monomer and the degree of sulfonation of the ionomer. Surface conductivities of 10−4-10−1 S/cm were achieved with PPy concentrations from 2 to 22 wt % and composite layers as thin as 15 μm. Intermolecular interactions occurred between PPy and the ionomer by proton transfer. Incorporation of PPy also increased the tensile strength of the ionomer film, significantly increased its modulus above Tg, and inhibited melt flow. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
In this paper, a new strategy to encapsulate and disperse carbon black by an in situ controlling free radical polymerization of 1,1-Diphenylenthyene (DPE) method was developed. Firstly, a living amphipathic precursor polymer of P (AA-BA) containing DPE unit was synthesized. This precursor could be grafted or absorbed on the surface of small carbon black particles to prevent further aggregation of carbon black. And the DPE unit in the living amphipathic precursor could initiate following monomer to form polymer shell via in situ polymerization. Carbon black/polymer core-shell composite particles with 69.6 wt.% polymer shell were prepared. The encapsulated carbon black had a small particle size and high performance on dispersibility and stability. Encapsulation mechanism of this method was confirmed by analyses of TEM, UV–vis, 1H NMR, 13C NMR, TGA, and other instruments.  相似文献   

7.
A well-defined,A2B-type,centipede-like copolymer of styrene and methyl methacrylate(PS-PS-PMMA) was synthesized by the combination of living anionic polymerization and atom transfer radical polym-erization(ATRP) . The synthetic approach involves the coupling reaction of polystyrene(PS) backbone bearing 1,1-diphenylethene(DPE) pendant groups,produced by ATRP and Wittig reaction,with living polystyryllithium(PSLi) ,and subsequent polymerization of the resulting 1,1-diphenylmethyl anions with methy methacrylate. The centipede-like copolymer was characterized by 1H NMR,IR,SEC,SLS,and DSC measurements.  相似文献   

8.
通过缩合聚合和可逆加成-断裂链转移聚合(RAFT)合成了一种新型可还原降解的梳形聚阳离子.首先,以具有化学选择性的三氟甲磺酸钪催化苹果酸、二硫二丙酸、癸二醇的三元缩合聚合得到了含多个侧羟基的聚(苹果酸-co-二硫二丙酸)癸二酯;将羟基酯化修饰为双硫酯后,通过甲基丙烯酸二甲氨基乙酯(DMAEMA)的RAFT聚合制备了梳型聚甲基丙烯酸二甲氨基乙酯(PDMAEMA).采用1H-NMR和GPC等测试方法对该聚合物进行结构表征.该梳形阳离子聚合物在还原性环境中可通过双硫键的断裂降解成为小分子量PDMAEMA低聚物.  相似文献   

9.
In this work, we present the first Pickering emulsion polymerization with a controlled/living character. Pickering emulsion polymerization in the presence of a novel suspension of zinc oxide/poly(sodium 4‐styrenesulfonate) (ZnO/PSS?) nanocomposite particles was applied to prepare ZnO/living block copolymer latexes. In the emulsion system, 1,1‐diphenylethene (DPE)‐controlled radical polymerization of poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) was proceeded in oil phase. The nanocomposite particles of ZnO/PSS? with an average diameter of 20 nm and negatively charged zeta potential around ?30 mV were synthesized via hydrothermal method then served as an effective emulsion stabilizer at the oil/water interface. Living polymerization was carried out using DPE‐capped PMMA as the macroinitiator and PMMA‐b‐PBA block copolymer latex was successfully prepared with coverage of ZnO/PSS? nanoparticles. Narrow size distributions of the droplets as well as latex particles were obtained, and the livingness of block copolymers was comparable to that of emulsions stabilized by conventional surfactants. The controlled/living character in Pickering emulsion polymerization was slightly influenced by the amount of PSS? immobilized into the ZnO/PSS? nanoparticles, whereas it was significantly influenced by the weight ratios between ZnO/PSS? and oil phase. The Pickering latexes showed excellent long term stability against either coalescence or sedimentation over several months. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
The efficiency of capping poly(ferrocenyldimethylsilane) (PFDMS) with 1,1-diphenylethylene (DPE) at room temperature and at 50 °C is reported. The capping of living anionic PFDMS chains was investigated by synthesizing short PFDMS oligomers of 10 repeat monomer units for which the end groups can be probed by 1H NMR. DPE is known to mediate the reactivity of the PFDMS, permitting the synthesis of block copolymers unobtainable by direct, sequential, living anionic polymerization such as poly(ferrocenyldimethylsilane)-block-poly(methylmethacrylate) (PFDMS-b-PMMA) and poly(ferrocenyldimethylsilane)-block-poly(2-vinylpyridine) (PFDMS-b-P2VP). However, at room temperature addition of the DPE is slow. We report that carrying out the capping of living PFDMS chains at elevated temperatures (50 °C) avoids the need to use a second reagent to facilitate the addition of DPE, or follow more complex synthetic routes.  相似文献   

11.
Anionic polymerizations of 1,1-dimethylsilacyclobutane, 1,1-diethylsilacyclobutane and 1-methyl-1-phenylsilacyclobutane were investigated. Addition of 5 mol % of butyllithium to a solution of 1,1-dimethylsilacyclobutane in THF-hexane (1 : 1) at −48°C provided poly(1,1-dimethylsilabutane) in 99% yield. Mn and Mw/Mn of the obtained polymer were 2400 and 1.10. This polymerization proceeded with a living nature. Mn increased in proportion as the yield of polymer increased. Addition of the second fresh feed of the monomer to the reaction mixture restarted polymerization of the second monomer at the same rate as in the initial stage. Addition of styrene to the living poly(1,1-dimethylsilabutane) provided a poly(1,1-dimethylsilabutane-b-styrene) block copolymer. It was also found that a polymerization of 1,1-diethylsilacyclobutane in THF-hexane at −48°C showed a living nature. In contrast, a polymerization of 1-methyl-1-phenylsilacyclobutane in THF at −78°C did not show a living nature. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3207–3216, 1997  相似文献   

12.
The novel single-ionic conductive gel polymer electrolyte was prepared from polyvinylidene fluoride (PVDF), propylene glycol carbonate (PC) and a new fluorine-containing ionomer. Cation-carbonyl interaction behavior, morphology and ionic conductive properties of this gel polymer electrolyte were studied by infrared spectra analysis (IR), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and complex impedance analysis. The results showed that the fluorine-containing ionomer was miscible with both PVDF and PC, and that the carbonyl groups in the ionomer and PC could bond competitively with the cation. Both the content of fluorine-containing ionomer and the content of PC had a great effect on morphology and ionic conductive properties of the samples. For this new gel polymer electrolyte, an ionic conductivity of above 10−4 S cm−1 at room temperature could be reached, and this electrolyte system was a single-ionic kind gel polymer electrolyte with the transport number of the sodium ion exceed 0.99 (t+>0.99).  相似文献   

13.
赵优良 《高分子科学》2010,28(5):819-828
<正>A series of 3-arm ABC and AA'B and 4-arm ABCD,AA'BC and AA′A″B heteroarm star polymers comprising one poly(4-methylphenyl vinyl sulfoxide) segment and other segments such as polystyrene,poly(α-methylstyrene), poly(4-methoxystyrene) and poly(4-trimethylsilylstyrene) were synthesized by living anionic polymerization based on diphenylethylene(DPE) chemistry.The DPE-functionalized polymers were synthesized by iterative methodology,and the objective star polymers were prepared by two distinct methodologies based on anionic polymerization using DPE-functionalized polymers.The first methodology involves an addition reaction of living anionic polymer with excess DPE-functionalized polymer and a subsequent living anionic polymerization of 4-methylphenyl vinyl sulfoxide(MePVSO) initiated from the in situ formed polymer anion with two or three polymer segments.The second methodology comprises an addition reaction of DPE-functionalized polymer with excess sec-BuLi and a following anionic polymerization of MePVSO initiated from the in situ formed polymer anion and 3-methyl-1,1-diphenylpentyl anion as well.Both approaches could afford the target heteroarm star polymers with predetermined molecular weight,narrow molecular weight distribution (M_w/M_n1.03) and desired composition,evidenced by SEC,~1H-NMR and SLS analyses.These polymers can be used as model polymers to investigate structure-property relationships in heteroarm star polymers.  相似文献   

14.
A comb-like copolymer consisting of a poly(vinylidene fluoride-co-chlorotrifluoroethylene) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. P(VDF-co-CTFE)-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and a microphase-separated structure of the copolymer were confirmed by proton nuclear magnetic resonance (1H NMR), FT-IR spectroscopy, and transmission electron microscopy (TEM). This comb-like polymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the –OH groups of PHEA and the –COOH groups of IDA. Upon doping with phosphoric acid (H3PO4) to form imidazole–H3PO4 complexes, the proton conductivity of the membranes continuously increased with increasing H3PO4 content. A maximum proton conductivity of 0.015 S/cm was achieved at 120 °C under anhydrous conditions. In addition, these P(VDF-co-CTFE)-g-PHEA/IDA/H3PO4 membranes exhibited good mechanical properties (765 MPa of Young's modulus), and high thermal stability up to 250 °C, as determined by a universal testing machine (UTM) and thermal gravimetric analysis (TGA), respectively.  相似文献   

15.
Among the four 1,1-disubstituted 2-vinylcyclopropanes, diethyl 2-vinylcyclopropane-1,1-dicarboxylate (Ia), 2-vinylcyclopropane-1,1-dicarbonitrile (Ib), ethyl 1-cyano-2-vinylcyclopropanecarboxylate (Ic), and 1,1-diphenyl-2-vinylcyclopropane (Id), Ib and Ic polymerized well with sodium cyanide in N,N-dimethylformamide. Ib was most reactive and a polymer (IIb) from Ib exhibited an inherent viscosity of 1.05 dl/g (concentration of 1.0 g in 100 ml of 95% H2SO4). All experimental results indicated that the polymerization proceeded by ring opening and that the structure of the polymers had pendant vinyl groups. The polymer IIc from Ic was soluble in common solvents like acetone, but IIb was soluble only in 95% H2SO4. Reactions of those compounds with benzenethiolate ion in ethanol yielded addition products that supported the ring-opening polymerization of those monomers. In the postulated mechanism of polymerization cyanide ion attacks the carbon of a cyclopropane ring with electron-releasing vinyl group and the resulting anion is thereby stabilized by two electron-withdrawing substituents. The propagation takes place by the reaction of the anion with another monomer molecule.  相似文献   

16.
Atom transfer radical polymerization (ATRP) was used to prepare core crosslinked star polymers with comb-like poly (lauryl methacrylate) (LMA) arms by one-pot “arm-first” method, involving the synthesis of comb-like PLMA arms, followed by their crosslinking, using a mixture of LMA monomer and ethylene glycol dimethacrylate (EGDMA) crosslinker. By adjusting the feeding time and level of EGDMA, a series of star-like polymers with various comb-like arms length and number can be obtained. The molecular architecture including radius of gyration (Rg), hydrodynamic radius (Rh) and intrinsic viscosity (ηi) etc. were characterized by a triple-detector gel permeation chromatography (GPC) equipped with a refractive index detector, viscometer detector and a multi-angle static laser light scattering (MALLS) detector. The thermal property and shearing stability of these star-like polymers were also investigated.  相似文献   

17.
An unsymmetrical triphenylethane, ethane-1,1,2-triyltribenzene (ETB), was successfully prepared from phenyl lithium, trans-1,2-diphenylethylene, and methanol. Characterization of the compound was performed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR). The polymerization of methyl methacrylate (MMA) was performed in the presence of ETB at 85 °C or higher. The free radicals obtained were characterized by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS). Gel permeation chromatography (GPC) traces of the average molecular weight of poly(MMA) (PMMA) showed a series of translations with increasing time. The average molecular weight of PMMA indicated narrow polydispersity, and a linear relationship was found between ln([M]0/[M]) and polymerization time. These results indicated the “living” nature of the polymerization of MMA in the presence of ETB. The structure of ETB was also introduced to the end of polystyrene (PS), polyisoprene (PI), and polyisoprene-b-polystyrene (PIS) chains which were obtained by living anionic polymerization. Hence, they initiated radical polymerization of MMA as ETB-end-macroinitiators to obtain block copolymers. Thus, living anionic polymerization and this radical polymerization method were combined together to prepare block copolymers without the intermediate transformation step.  相似文献   

18.
Fe(0) was firstly used as single‐electron transfer‐living radical polymerization catalyst for acrylonitrile polymerization using carbon tetrachloride as initiator, hexamethylenetetramine as N‐ligand, and N,N‐dimethylformamide as the solvent at 65 °C. First‐order kinetic studies indicated that this polymerization proceeded in a “living”/controlled manner. The living nature of the polymerization was also confirmed by chain extension of methyl methacrylate with polyacrylonitrile (PAN) as macroinitiator. Furthermore, PAN was modified with NH2OH·HCl to generate amidoxime groups for extraction of heavy metal ions (Hg2+) from aqueous solutions. Fourier transformed infrared spectroscopy was performed to characterize chemical composition and structure. The adsorption property of Hg2+ was investigated at different pH values of aqueous solutions and distilled water. The maximal saturated adsorption capacity of Hg2+ was 4.8 mmol g?1. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The sterically hindered, 1,1‐disubstituted monomers di‐n‐butyl itaconate (DBI), dicyclohexyl itaconate (DCHI), and dimethyl itaconate (DMI) were polymerized with reversible addition–fragmentation chain transfer (RAFT) free‐radical polymerization and atom transfer radical polymerization (ATRP). Cumyl dithiobenzoate, cumyl phenyl dithioacetate, 2‐cyanoprop‐2‐yl dithiobenzoate, 4‐cyanopentanoic acid dithiobenzoate, and S‐methoxycarbonylphenylmethyl dithiobenzoate were employed as RAFT agents to mediate a series of polymerizations at 60 °C yielding polymers ranging in their number‐average molecular weight from 4500 to 60,000 g mol?1. The RAFT polymerizations of these hindered monomers displayed hybrid living behavior (between conventional and living free‐radical polymerization) of various degrees depending on the molecular structure of the initial RAFT agent. In addition, DCHI was polymerized via ATRP with a CuCl/methyl benzoate/N,N,N′,N″,N″‐pentamethyldiethylenetriamine/cyclohexanone system at 60 °C. Both the ATRP and RAFT polymerization of the hindered monomers displayed living characteristics; however, broader than expected molecular weight distributions were observed for the RAFT systems (polydispersity index = 1.15–3.35). To assess the cause of this broadness, chain‐transfer‐to‐monomer constants for DMI, DBI, and DCHI were determined (1.4 × 10?3, 1.3 × 10?3, and 1.0 × 10?3, respectively) at 60 °C. Simulations carried out with the PREDICI program package suggested that chain transfer to monomer contributed to the broadening process. In addition, the experimental results indicated that viscosity had a pronounced effect on the broadness of the molecular weight distributions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3692–3710, 2006  相似文献   

20.
A comb-like polymer containing crystallized alkyl side chains and the intermolecular hydrogen bonds between the linking groups was fabricated by grafting long-chain fatty amine onto poly(styrene-co-acrylic acid)n (P(S-AA)n, wherein “n” denoted AA feed ratio). The chemical structures and crystallization behaviors of the comb-like polymer P(S-AA)n-g(p) (wherein “p” denoted the number of side-chain carbon atoms) were analyzed by Fourier transform infrared, gel permeation chromatography, X-ray photoelectron spectroscopy, and X-ray diffractometer, differential scanning calorimetry, atomic force microscopy, respectively. It was found that the lamellar morphology could be generated by controlling the grafting density and side chain length of P(S-AA)n-g(p). Moreover, it was identified that the hydrogen bonds between amide groups could enhance the crystallinity and then adjust the interlamellar spacing of lamellar phase. As a result, P(S-AA)70-g(18) with the highest degree of crystallinity and closely packed lamellar morphology showed a good gas-barrier performance, and the nitrogen permeability reached 1.78 × 10?14 cm3·cm/cm2·s·Pa. Furthermore, the permeation switch of the obtained comb-like polymer could reach 500 times traversing the melting point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号