首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结合大分子自组装和分子印迹技术制备了分子印迹聚合物胶束, 并通过电沉积将其固载到电极表面得到分子印迹电化学传感器. 首先以甲基丙烯酸二甲氨基乙酯(DMA)、丙烯酸羟乙酯(HEA)、丙烯酸二异辛酯(EHA)和苯乙烯(St)合成了共聚物poly(DMA-co-HEA-co-EHA-co-St), 在其侧链接枝上双键得到可光交联的双亲共聚物. 以水为沉淀剂诱发该双亲共聚物在含有对乙酰氨基苯酚的溶液中自组装, 得到印迹有对乙酰氨基苯酚的聚合物胶束, 利用动态激光光散射(DLS)和透射电镜(TEM)表征其尺寸和形貌. 最后通过电沉积技术诱导印迹胶束在金电极表面组装, 经紫外光辐照交联后, 洗脱模板分子形成分子印迹膜, 制备了对乙酰氨基苯酚分子印迹传感器, 通过循环伏安法、差分脉冲溶出伏安法研究此印迹传感器的性能. 实验结果表明, 该传感器对对乙酰氨基苯酚具有良好的选择性和灵敏度, 浓度响应线性范围为1×10-6 到4×10-3 mol/L, 检测限为3.3×10-7 mol/L.  相似文献   

2.
利用原位聚合分子印迹技术,以3氨基苯硼酸(3ABBA)为功能单体,利巴韦林(RIB)为目标分子,以硼酸和顺式二醇在不同酸碱度条件下可逆形成环内酯键为原理,在玻碳电极表面原位聚合形成利巴韦林分子印迹膜,研制了测定利巴韦林的分子印迹电化学传感器。采用循环伏安法(CV)和差分脉冲法(DPV)对印迹膜性能进行研究。DPV测试表明:在最优实验条件下,利巴韦林的浓度在5.0×10-8~1.0×10-5mol/L范围内与峰电流呈良好的线性关系,相关系数(r2)为0.9953,检出限(S/N=3)为1.5×10-8mol/L。特异性实验表明制备的传感器对利巴韦林的选择性良好。该分子印迹电化学传感器可用于食品中利巴韦林的检测。  相似文献   

3.
甲醇在Pd基电催化剂上的氧化   总被引:2,自引:0,他引:2  
以多壁碳纳米管(MWCNT)和碳黑为载体, 用交替微波加热的方法制备了担载型Pd电催化剂, 并表征了其微观形貌和电化学性能. 透射电镜(TEM)和X射线衍射(XRD)结果显示, Pd在MWCNT载体上有较好的分散度, 平均粒径为4 nm. 循环伏安、计时电位和交流阻抗的测试结果表明, 在碱性溶液中, Pd/MWCNT显示出良好的甲醇氧化性能. 在Pd/MWCNT催化剂上, 甲醇氧化的起始电位比在Pt/C上负移100 mV 左右. Pd/MWCNT高的催化活性不仅与它的高的活性表面积有关, 而且和Pd与载体MWCNT之间的协同作用有关.  相似文献   

4.
    
A highly sensitive and selective potentiometric and voltammteric assay for the detection of Fe3+ using (E)‐3‐((2‐(2‐(2‐aminoethylamino) ethylamino) ethylimino)methyl)‐4H‐chromen‐4‐one (IFE(III)) ionophore was developed. To demonstrate the ion‐to‐electron transfer ability of MWCNT, these were incorporated in the ion‐selective membrane and response characteristics of Fe3+ electrode was compared with those of the traditional ion selective electrode. The electrode showed an improved Nernstian slope, lower detection limit, response time of less than 5 s and working in a pH range of 3.0 to 8.0. Differential pulse voltammetric studies were performed for IFE(III)‐Fe3+ complex in DMSO solvent medium at glassy carbon (GC) electrode. A linear relationship between the cathodic peak current and concentration of Fe3+ was observed in the range of 1.6×10?5 to 4.4×10?5 mol/L with a detection limit of 5.2×10?8 mol/L. The electrode shows remarkable selectivity for Fe3+ ions over alkali, alkaline earth, transition and heavy metal ions. The optimized electrode was successfully applied for the determination of Fe3+ ion in different real‐life samples using potentiometric technique. Theoretical calculations were used to support the complexation behavior of Fe3+ with IFE(III).  相似文献   

5.
    
A molecularly imprinted electrochemical sensor is successfully developed to detect bovine serum albumin (BSA) based on the dynamic electrochemical impedance spectroscopy (DEIS) instead of the traditional impedance spectroscopy. The sensor is prepared using chitosan and pyrrole as modified material and functional monomers, respectively, and the fast and real‐time characterization of molecular imprinting process can be obtained by DEIS. It is indicated that the removal and rebinding processes of BSA are closely related with the DEIS impedance under dynamic conditions, and the direct correlation between the resulting kinetic information and BSA concentrations can be established. As a result, the impedance changing rates in the initial 5 min of BSA adsorption are linear to the BSA concentrations ranging from 0.0001 to 0.01 ng mL?1 and 0.01 to 1 ng mL?1 with a detection limit of 5×10?5 ng mL?1 (S/N=3). In addition, the detection of BSA by DEIS does not require the system to be in equilibrium. The sensor also shows simplicity, high sensitivity, good stability and acceptable recovery in real samples, indicating its promising prospects in the fast and real‐time detection of proteins.  相似文献   

6.
    
ABSTRACT

In this work, a simple, sensitive and rapid method for the determination of trace amounts of catechol (CT) in aqueous media has been suggested. For this purpose, poly(1H-1,2,4-triazole-3-thiol) film was electrochemically deposited successfully at the gold electrode (Au/T3T). The electrochemical behaviour of CT was studied on the Au/T3T electrode by the cyclic voltammetry and differential pulse voltammetry techniques. The anodic peak current value and the concentration of CT showed a good linear relationship in the range of 0.015–2.8 µM. The limit of detection was found as 1.88 nM (S/N = 3). Besides, the reproducibility, repeatability, stability and interference measurements were also assayed. This sensor was applied successfully for the detection of CT in synthetic and real samples.  相似文献   

7.
    
A new compound, 1,1′‐di‐(p‐nitrophenylhydrazino‐β‐carbonyl)‐ferrocene ( 1 ) was designed as an anion receptor based on its hydrogen bonding interaction with anions. Investigation of UV–vis spectra showed that it was an excellent optical sensors for F?. Furthermore, the nature of interaction between it and F? was investigated by 1H NMR titration experiments. In addition, the efficiency of the receptor applied as an electrochemical sensor for F? was discussed by cyclic voltammetry (CV). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Ni修饰碳纳米管促进合成气高效制甲醇Cu基催化剂研究   总被引:2,自引:0,他引:2  
沈炳顺  武小满  张鸿斌  林国栋  董鑫 《化学学报》2004,62(18):1721-1728
利用化学还原沉积法,制备一类Ni高度分散/修饰的多壁碳纳米管基新型材料y%Ni/MWCNT(y%为质量百分数),并用其作为促进剂,制备共沉淀型y%Ni/MWCNT促进的合成气高效合成甲醇Cu-ZnO-Al2O3催化剂,Cu6Zn3Al1-x%(y%Ni/MWCNT)(x%为质量百分数).实验发现,Ni对MWCNT的预修饰能明显地提高单纯MWCNT促进的Cu-ZnO-A12O3催化剂对合成气转化为甲醇的催化活性.在2.0 MPa,493 K,V(H2):V(CO):V(CO2):V(N2)=62:30:5:3,GHSV=2700 mL(STP)·h-1·(g-cat.)-1的反应条件下,所观测CO转化率达34%,相应甲醇时空产率为442 mg·h-1·(g-cat.)-1,分别是非促进的基质催化剂Cu6Zn3Al1[最佳操作温度513 K时为320 mg·h-1·(g-cat.)-1]和单纯MWCNT促进的催化剂Cu6Zn3Al1-12.5%MWCNT[最佳操作温度503 K时为378 mg·h-1·(g-cat.)-1]的1.38和1.17倍.在反应温度≤503 K时产物中甲醇的选择性≥98%;当反应温度>503 K时有可观量CH4的生成,其选择性随催化剂中M含量及反应温度上升而增加.为兼获较高的CO转化率及相应甲醇选择性,催化剂的组成以Cu6Zn3Al1-12.5%(8%Ni/MWCNT)为佳,反应温度以~493 K为宜.结合催化体系的表征(XRD,TPR,TPD)等结果,讨论了y%Ni/MWCNT促进剂的作用本质.  相似文献   

9.
    
In this research work, a hematite (α-Fe2O3) nanoparticle was prepared and then mixed with oxidized multi-walled carbon nanotubes (O-MWCNT) to form a stable suspension of an α-Fe2O3/O-MWCNTs nanocomposite. Different characterization techniques were used to explore the chemical and physical properties of the α-Fe2O3/O-MWCNTs nanocomposite, including XRD, FT-IR, UV-Vis, and SEM. The results revealed the successful formation of the α-Fe2O3 nanoparticles, and the oxidation of the MWCNT, as well as the formation of stable α-Fe2O3/O-MWCNTs nanocomposite. The electrochemical behaviour of the α-Fe2O3/O-MWCNTs nanocomposite was investigated using cyclic voltammetry (CV) and linear sweep voltammetry (LSV), and the results revealed that modification of α-Fe2O3 nanoparticles with O-MWCNTs greatly enhanced electrochemical performance and capacitive behaviour, as well as cycling stability.  相似文献   

10.
The objective of this work was to prepare novel conductive blends of poly(vinylidene fluoride) (PVDF) with polypyrrole (PPy) and to compare their performance with PVDF/multiwall carbon nanotube (MWCNT) composites and novel PVDF/PPy/MWCNT hybrid systems. All the compositions were prepared by melt mixing using a miniature mixer. The mixtures were characterized by Fourier transformed infrared (FTIR), wide angle X-ray diffraction (WAXD), thermogravimetric analyses (TGA), scanning and transmission electron microscopy (SEM and TEM, respectively) and volume electrical resistivity. For the binary PVDF/PPy and PVDF/MWCNT systems, percolation thresholds of 10 and 0.3 wt%, respectively, were found. In the hybrid systems, however, the percolation threshold for each filler was lower than in the binary systems, but the electrical conductivities were always much higher at all concentrations than the conductivities of the binary systems. Therefore, the addition of both fillers had a synergistic effect on the hybrid system conductivity, which was attributed to its morphology: the PPy increased the homogeneity of the MWCNT distribution and decreased the available free volume for the MWCNT; as a result the MWCNT rolled around the PPy particles bridging them through the PVDF matrix, increasing the quantum tunneling effect and thus, the electrical conductivity of the system.  相似文献   

11.
李洋  孙楫舟  边超  佟建华  夏善红 《分析化学》2011,(11):1621-1628
基于循环伏安扫描(CV)的电化学沉积方法制备出多孔性纳米簇状结构铜膜,结合采用微机电系统(Micro electro mechanical systems,MEMS)技术制备的微电极芯片,研制出用于NO3-检测的安培型微传感器。考察该微传感器对NO3-的响应性能,在6.25~300mmol/L浓度范围内,灵敏度为0.0526mA/(mmol/L),线性度99.93%;在300~3500mmol/L浓度范围内,灵敏度为0.0353mA/(mmol/L),线性度99.18%。与文献报道相比,该传感器表现出更高的灵敏度。考察水体中常见的NO2-,Cl-,HPO42-/PO43-,SO42-,HCO3-/CO23-,Na+和K+等离子对该传感器的干扰性能,传感器表现出较好的抗干扰性能。采用该微传感器对实际水样进行测试,测试结果与具有权威资质的测试公司的测试结果之间具有一定的相关性。实验结果表明,采用循环伏安沉积方法在微电极表面制备的纳米簇状结构的铜敏感膜,比表面积大,催化活性高,对NO3-表现出了很好的敏感特性和选择性,适用于对微量NO3-的检测。  相似文献   

12.
         下载免费PDF全文
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

13.
由于过渡金属替代的多金属氧酸盐(polyoxometalates)的催化、磁性、电化学等性质,越来越受到人们的关注~([1-7]).目前世界上约有10亿人生活在缺碘地区,碘的缺乏严重影响人类健康.对食物、生物临床、环境及工业中碘含量检测很有实际意义.  相似文献   

14.
    
Plasticised membranes using 2-[{(2-hydroxyphenyl)imino}methyl]-phenol (L1) and 2-[{(3-hydroxyphenyl)imino}methyl]-phenol (L2), have been prepared and investigated as Cu2+ ion-selective sensors. Effect of various plasticisers, namely, dibutyl phthalate (DBP), dibutyl sebacate (DBS), benzyl acetate (BA), o-nitrophenyloctylether (o-NPOE) and anion excluders, oleic acid (OA) and sodium tetraphenylborate (NaTPB) was studied and improved performance was observed in several instances. Optimum performance was observed with membranes of (L1) having composition L1 : DBS : OA : PVC in the ratio of 6 : 54 : 10 : 30 (w/w, %). The sensor works satisfactorily in the concentration range 3.2 × 10?8–1.0 × 10?1 mol L?1 with a Nernstian slope of 29.5 ± 0.5 mV decade?1 of a cu2+ . The detection limit of the proposed sensor is 2.0 × 10?8 mol L?1 (1.27 ng mL?1). Wide pH range (3.0–8.5), fast response time (7 s), sufficient (up to 25% v/v) non-aqueous tolerance and adequate shelf life (3 months) indicate the utility of the proposed sensor. The potentiometric selectivity coefficients as determined by matched potential method indicate selective response for Cu2+ ions over various interfering ions, and therefore could be successfully used for the determination of copper in edible oils, tomato plant material and river water.  相似文献   

15.
    
Nanostructured NiCu layered double hydroxides (NiCu LDHs) are synthesized in situ on polypyrrole nanotubes through convenient co-precipitation and hydrothermal synthesis. The nanostructured composite (NiCu LDHs/PPy) shows high electrocatalytic activities towards the glucose oxidation reaction in alkaline electrolyte so that a nonenzymatic glucose sensor is developed. It is demonstrated that the sensor offers a wide linear range from 1.5 μM to 1.0 mM with a high sensitivity of 525.8 μA mM−1 cm−2 and a low limit of detection of 66 nM (S/N = 3). The nonenzymatic sensor has been successfully applied to real blood samples for glucose monitoring with high accuracy.  相似文献   

16.
This study used a facile method to develop a novel silver/Graphene–polypyrrole (Ag/G–PPy)-modified electrode that can be used as an electrochemical sensor for levosimendan detection. The properties of the synthesized Ag/G–PPy-modified electrode were examined through field-emission scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The Ag/G–PPy-modified electrode exhibited satisfactory current signals toward levosimendan concentrations ranging from 0.21 to 6.88 μM and exhibited a low detection limit (0.12 μM). Accordingly, the proposed electrode can serve as a simple and inexpensive electrochemical sensor for levosimendan detection.  相似文献   

17.
The new compound 3-((2,5-dimethoxyphenyl)ethynyl)thiophene has been synthesised by Sonogashira coupling. A modified electrode coated with a polythiophene film bearing a quinone moiety was obtained by electropolymerisation of the thienyl group followed by anodic oxidation of para-dimethoxyphenyl group. The cyclovoltammetric response resulting from the reaction of glutathione with the benzoquinone moiety was investigated. The responses of the modified electrode as a new potentiometric sensor of reduced thiols are proposed.  相似文献   

18.
A novel electrochemical method as a sensitive and convenient technique for the determination of heme proteins based on their interaction with ZnO nanorods was developed. A ZnO nanorod modified glassy carbon electrode (ZnO/GCE) was prepared and the electrochemical behaviors of heme proteins, such as hemoglobin (HB) and cytochrome c (Cyt-c), on this modified electrode have been studied. The results showed that both HB and Cyt-c could be oxidized on the modified electrode and the oxidation currents were linear to the concentrations of the analytes in aqueous solutions. In addition, the results of flow injection analysis (FIA) further suggested the high stability and reproducibility of the ZnO nanorod modified electrode. So this method can be applied to the determination of HB and Cyt-c in biological systems.  相似文献   

19.
亚硝酸盐是一种广泛存在的原料,长期食用会对人体健康不利甚至致癌。因此,简单、灵敏的亚硝酸盐检测方法的开发具有非常重要的意义。本文合成了金/还原氧化石墨烯/羟基氧化铁(Au/rGO/FeOOH)复合材料,并通过SEM、 XRD和EDX等测试进行了材料表征。将合成的复合材料滴涂在氧化氟锡(FTO)电极表面,利用它们的协同催化氧化性能,成功构建了一步检测亚硝酸盐(NO2-)的新型电化学传感器。在最佳优化实验条件下, 通过差分脉冲伏安法实现NO2-的定量检测, 其线性范围为0.001 ~ 5 mmol·L-1, 检出限为0.8 μmol·L-1(S/N = 3), 且响应时间小于2 s。同时, 所制备的传感器表现出良好的选择性和重现性, 也能用于实际样品的测定。  相似文献   

20.
电化学伏安行为研究表明,在pH 3.98的HAc-NaAc(20%乙醇)缓冲溶液中,紫草素在玻碳电极产生了一对氧化还原波,并证实这一反应是受吸附控制为主的电极过程.同时选用方波伏安法以氧化峰为对象考察峰电流与药物浓度的关系,结果表明:峰电流与紫草素浓度在2.08×10-8~1.82×10-6 mol/L范围内呈较好线性关系.方法用于中药药品紫草中紫草素及其衍生物总含量的测定,样品不经预处理分离即可直接测定,结果令人满意.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号