首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of the hydrido-triruthenium cluster complex [Ru3(mu-H)(mu3-kappa(2)-HNNMe2)(CO)9] (1; H2NNMe2 = 1,1-dimethylhydrazine) with alkynes that have alpha-hydrogen atoms give trinuclear derivatives containing edge-bridging allyl or face-capping alkenyl ligands. Under mild conditions (THF, 70 degrees C) the isolated products are as follows: [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-1-syn-Me-3-anti-EtC3H3)(mu-CO)2(CO)6] (2) and [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-1-syn-Me-3-syn-EtC3H3)(mu-CO)2(CO)6] (3) from 3-hexyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-3-anti-PhC3H4)(mu-CO)2(CO)6] (4), [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-MeCCHPh)(mu-CO)2(CO)6] (5) and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-PhCCHMe)(mu-CO)2(CO)6] (6) from 1-phenyl-1-propyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-3-anti-PrC3H4)(mu-CO)2(CO)6] (7), [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-BuCCH2)(mu-CO)2(CO)6] (8), and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-HCCHBu)(mu-CO)2(CO)6] (9) from 1-hexyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-HOH2CCCH2)(mu-CO)2(CO)6] (10) from propargyl alcohol; and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-MeOCH2CCH2)(mu-CO)2(CO)6] (11) from 3-methoxy-1-propyne. The regioselectivity of these reactions depends upon the nature of the alkyne reagent, which affects considerably the kinetic barriers of important reaction steps and the stability of the final products. It has been established that the face-capped alkenyl derivatives are not precursors to the allyl products, which are formed via edge-bridged alkenyl intermediates. At higher temperature (toluene, 110 degrees C), the complexes that have allyl ligands with an anti substituent are isomerized into allyl derivatives with that substituent in the syn position, for example, 4 into [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-3-syn-PhC3H4)(mu-CO)2(CO)6] (14). The diene complex [Ru3(mu-H)(mu3-kappa(2)-HNNMe2)(mu-kappa(4)-trans-EtC4H5)(CO)7] (13) has been obtained from the thermolysis of compounds 2 and 7 at 110 degrees C (3 and [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-3-syn-PrC3H4)(mu-CO)2(CO)6] (12) are also formed in these reactions). A DFT theoretical study has allowed a comparison of the thermodynamic stabilities of isomeric compounds and has helped rationalize the experimental results. Mechanistic proposals for the synthesis of the allyl complexes and their isomerization processes are also provided.  相似文献   

2.
The reactions of the triruthenium cluster complex [Ru3(mu-H)(mu3-eta2-HNNMe2)(CO)9] (1; H2NNMe2=1,1-dimethylhydrazine) with alkynes (PhC triple bond CPh, HC triple bond CH, MeO2CC triple bond CCO2Me, PhC triple bond CH, MeO2CC triple bond CH, HOMe2CC triple bond CH, 2-pyC triple bond CH) give trinuclear complexes containing edge-bridging and/or face-capping alkenyl ligands. Whereas the edge-bridged products are closed triangular species (three Ru-Ru bonds), the face-capped products are open derivatives (two Ru-Ru bonds). For terminal alkynes, products containing gem (RCCH2) and/or trans (RHCCH) alkenyl ligands have been identified in both edge-bridging and face-capping positions, except for the complex [Ru3(mu3-eta2-HNNMe2)(mu3-eta3-HCCH-2-py)(mu-CO)(CO)7], which has the two alkenyl H atoms in a cis arrangement. Under comparable reaction conditions (1:1 molar ratio, THF at reflux, time required for the consumption of complex 1), some reactions give a single product, but most give mixtures of isomers (not all the possible ones), which were separated. To determine the effect of the hydrazido ligand, the reactions of [Ru3(mu-H)(mu3-eta2-MeNNHMe)(CO)9] (2; HMeNNHMe=1,2-dimethylhydrazine) with PhC triple bond CPh, PhC triple bond CH, and HC triple bond CH were also studied. For edge-bridged alkenyl complexes, the Ru--Ru edge that is spanned by the alkenyl ligand depends on the position of the methyl groups on the hydrazido ligand. For face-capped alkenyl complexes, the relative orientation of the hydrazido and alkenyl ligands also depends on the position of the methyl groups on the hydrazido ligand. A kinetic analysis of the reaction of 1 with PhC[triple chemical bond]CPh revealed that the reaction follows an associative mechanism, which implies that incorporation of the alkyne in the cluster is rate-limiting and precedes the release of a CO ligand. X-ray diffraction, IR and NMR spectroscopy, and calculations of minimum-energy structures by DFT methods were used to characterize the products. A comparison of the absolute energies of isomeric compounds (obtained by DFT calculations) helped rationalize the experimental results.  相似文献   

3.
The reactions of [Ru(3)(CO)(12)] with half equivalent of 2-amino-6-methylpyridine (H(2)ampy) or 2-aminopyridine (H(2)apy) in refluxing xylene give the hexanuclear products [Ru(6)(mu(3)-H)(2)(mu(5)-eta(2)-L)(mu-CO)(2)(CO)(14)] (L = ampy, 1; apy, 2). These reactions represent the first high-yield syntheses of hexanuclear complexes with a basal edge-bridged square pyramidal metallic skeleton. Five metal atoms of these complexes are bridged by the N-donor ligand in such a way that the edge-bridging metal atom is attached to the pyridine nitrogen, while the basal atoms of the square pyramid are capped by an imido fragment that arises from the activation of both N-H bonds of the NH(2) group. The reactive sites of these complexes in CO substitution reactions have been determined by studying the reactivity of 1 with triphenylphosphine. Two kinetically controlled monosubstitutions take place on the edge-bridging metal atom in positions cis to the pyridine nitrogen, leading to a mixture of two isomers of formula [Ru(6)(mu(3)-H)(2)(mu(5)-eta(2)-ampy)(mu-CO)(2)(CO)(13)(PPh(3))] (3 and 4). On heating at 80 degrees C, these monosubstituted isomers are transformed, via a dissociative pathway, into the product of thermodynamic control (5), which has the PPh(3) ligand on the apical Ru atom. The di- and trisubstituted derivatives [Ru(6)(mu(3)-H)(2)(mu(5)-eta(2)-ampy)(mu-CO)(2)(CO)(12)(PPh(3))(2)] (6) and [Ru(6)(mu(3)-H)(2)(mu(5)-eta(2)-ampy)(mu-CO)(2)(CO)(11)(PPh(3))(3)] (7) are stepwise formed from 3-5 and PPh(3). Compound 6 has the PPh(3) ligands on the edge-bridging and apical Ru atoms, and compound 7 has an additional PPh(3) ligand on an unbridged basal Ru atom. The compound [Ru(6)(mu(3)-H)(2)(mu(5)-eta(2)-ampy)(mu-CO)(2)(CO)(12)(mu-dppm)] (8), in which a basal and the apical Ru atoms are spanned by the dppm ligand, has been isolated from the reaction of 1 with bis(diphenylphosphino)methane.  相似文献   

4.
Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.  相似文献   

5.
The triply bonded dirhenium(II) synthons Re(2)X(4)(mu-dppm)(2) (X = Cl, Br; dppm = Ph(2)PCH(2)PPh(2)) react with acetylene at room temperature in CH(2)Cl(2) and acetone to afford the bis(acetylene) complexes Re(2)X(4)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH) (X = Cl (3), Br(4)). Compound 3 has been derivatized by reaction with RNC ligands in the presence of TlPF(6) to give unsymmetrical complexes of the type [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(CNR)]PF(6) (R = Xyl (5), Mes (6), t-Bu (7)), in which the RCN ligand has displaced the chloride ligand cis to the eta(2)-HCCH ligand. The reaction of 3 with an additional 1 equiv of acetylene in the presence of TlPF(6) gives the symmetrical all-cis isomer of [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(2)]PF(6) (8). The two terminal eta(2)-HCCH ligands in 8 are very labile and can be displaced by CO and XylNC to give the complexes [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(L)(2)]Y (L = CO when Y = PF(6) (9); L = CO when Y = (PF(6))(0.5)/(H(2)PO(4))(0.5) (10); L = XylNC when Y = PF(6) (11)). These substitution reactions proceed with retention of the all-cis stereochemistry. Single-crystal X-ray structure determinations have been carried out on complexes 3, 5, 8, 10, and 11. In no instance have we found that the acetylene ligands undergo reductive coupling reactions.  相似文献   

6.
The treatment of [Ru3(CO)12] with 6,6'-dimethyl-2,2'-bipyridine (Me2bipy) or 2,9-dimethyl-1,10-phenanthroline (Me2phen) in THF at reflux temperature gives the trinuclear dihydride complexes [Ru3(mu-H)2(mu3-L1)(CO)8] (L1 = HCbipyMe 1 a, HCphenMe 1 b), which result from the activation of two C-H bonds of a methyl group. The hexa-, hepta-, and pentanuclear derivatives [Ru6(mu3-H)(mu5-L2)(mu-CO)3(CO)13] (L2 = CbipyMe 2 a, CphenMe 2 b), [Ru7(mu3-H)(mu5-L2)(mu-CO)2(CO)16] (L2 = CbipyMe 3 a, CphenMe 3 b), and [Ru5(mu-H)(mu5-C)(mu-L3)(CO)13] (L3 = bipyMe 4 a, phenMe 4 b) can also be obtained by treating 1 a and 1 b with [Ru3(CO)12]. Compounds 2 a and 2 b have a basal edge-bridged square-pyramidal metallic skeleton with a carbyne-type C atom capping the four Ru atoms of the pyramid base. The structures of 3 a and 3 b are similar to those of 2 a and 2 b, respectively, but an additional Ru atom now caps a triangular face of the square-pyramidal fragment of the metallic skeleton. The most interesting feature of 2 a, 2 b, 3 a, and 3 b is that their carbyne-type C atoms were originally bound to three hydrogen atoms in Me2bipy or Me2phen and, therefore, they arise from the unprecedented activation of all three C-H bonds of C-bound methyl groups. The pentanuclear compounds 4 a and 4 b contain a carbide ligand surrounded by five Ru atoms in a distorted trigonal-bipyramidal environment. They are the products of a series of processes that includes the activation of all bonds (three C-H and one C-C) of organic methyl groups, and are the first examples of complexes having carbide ligands that arise from C-bonded methyl groups. The alkenyl derivatives [Ru5(mu5-C)(mu-p-MeC6H4CHCHphenMe)(CO)13] (5 b), [Ru5(mu-H)(mu5-C)(mu-p-MeC6H4CHCHphenMe)(p-tolC2)(CO)12] (6 b), and [Ru5(mu-H)(mu5-C)(mu-PhCHCHphenMe)(PhC2)(CO)12] (7 b) have been obtained by treating 4 b with p-tolyl- and phenylacetylene, respectively. Their heterocyclic ligands contain an alkenyl fragment in the position that was originally occupied by a methyl group. Therefore, these complexes are the result of the formal substitution of an alkenyl group for a methyl group of 2,9-dimethyl-1,10- phenanthroline.  相似文献   

7.
The bis(PNP)-donor pincer ligand 1,4-C(6)H(4){N(CH(2)CH(2)PPh(2))(2)}(2), 1, contains weakly basic nitrogen donor atoms because the lone pairs of electrons are conjugated to the bridging phenylene group, and this feature is used in the synthesis of oligomers and polymers. The complexes [Pd(2)X(2)(mu-1)](OTf)(2), X=Cl, Br or OTf, contain the ligand 1 in bis(pincer) binding mode (mu-kappa(6)-P(4)N(2)), but [Pd(4)Cl(6)(mu(3-)1)(2)]Cl(2) contains the ligand in an unusual unsymmetrical mu(3)-kappa(5)-P(4)N binding mode. The bromide complex is suggested to exist as a polymer [{Pd(2)Br(4)(mu(4)-1)}(n)] with the ligands 1 in mu(4)-kappa(4)-P(4) binding mode. The methylplatinum(II) complexes [Pt(2)Me(4)(mu-1)] and [Pt(2)Me(2)(mu-1)](O(2)CCF(3))(2) contain the ligand in mu-kappa(4)-P(4) and mu-kappa(6)-P(4)N(2) bonding modes, while the silver(I) complex [Ag(2)(O(2)CCF(3))(2) (mu-1)] contains the ligand 1 in an intermediate bonding mode in which the nitrogen donors are very weakly coordinated. The complexes [Pd(2)(OTf)(2)(mu-1)](OTf)(2) and [Ag(2)(O(2)CCF(3))(2)(mu-1)] react with 4,4'-bipyridine to give polymers [Pd(2)(micro-bipy)(mu-1)](OTf)(4) and [Ag(2)(mu-bipy)(mu-1)](O(2)CCF(3))(2).  相似文献   

8.
Nonanuclear cluster complexes [Ru9(mu3-H)2(mu-H)(mu5-O)(mu4-ampy)(mu3-Hampy)(CO)21] (4) (H2ampy = 2-amino-6-methylpyridine), [Ru9(mu5-O)2(mu4-ampy)(mu3-Hampy)2(mu-CO)(CO)20] (5), [Ru9(mu5-O)2(mu4-ampy)(mu3-Hampy)2(mu-CO)2(CO)19] (6), and [Ru9(mu4-O)(mu5-O)(mu4-ampy)(mu3-Hampy)(mu-Hampy)(mu-CO)(CO)19] (7), together with the known hexanuclear [Ru6(mu3-H)2(mu5-ampy)(mu-CO)2(CO)14] (2) and the novel pentanuclear [Ru5(mu4-ampy)(2)(mu-CO)(CO)12] (3) complexes, are products of the thermolysis of [Ru3(mu-H)(mu3-Hampy)(CO)9] (1) in decane at 150 degrees C. Two different and very unusual quadruply bridging coordination modes have been observed for the ampy ligand. Compounds 4-7 also feature one (4) or two (5-7) bridging oxo ligands. With the exception of one of the oxo ligands of 7, which is in a distorted tetrahedral environment, the remaining oxo ligands of 4-7 are surrounded by five metal atoms. In carbonyl metal clusters, quadruply bridging oxo ligands are very unusual, whereas quintuply bridging oxo ligands are unprecedented. By using 18O-labeled water, we have unambiguously established that these oxo ligands arise from water.  相似文献   

9.
Thermolysis of [Ru3(CO)9(mu3-NOMe)(mu3-eta2-PhC2Ph)] (1) with two equivalents of [Cp*Co(CO)2] in THF afforded four new clusters, brown [Ru5(CO)8(mu-CO)3(eta5-C5Me5)(mu5-N)(mu4-eta2-PhC2Ph)] (2), green [Ru3Co2(CO)7(mu3-CO)(eta5-C5Me5)2(mu3-NH)[mu4-eta8-C6H4-C(H)C(Ph)]] (3), orange [Ru3(CO)7(mu-eta6-C5Me4CH2)[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (4) and pale yellow [Ru2(CO)6[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (5). Cluster 2 is a pentaruthenium mu5-nitrido complex, in which the five metal atoms are arranged in a novel "spiked" square-planar metal skeleton with a quadruply bridging alkyne ligand. The mu5-nitrido N atom exhibits an unusually low frequency chemical shift in its 15N NMR spectrum. Cluster 3 contains a triangular Ru2Co-imido moiety linked to a ruthenium-cobaltocene through the mu4-eta8-C6H4C(H)C(Ph) ligand. Clusters 4 and 5 are both metallapyrrolidone complexes, in which interaction of diphenylacetylene with CO and the NOMe nitrene moiety were observed. In 4, one methyl group of the Cp* ring is activated and interacts with a ruthenium atom. The "distorted" Ru3Co butterfly nitrido complex [Ru3Co(CO)5(eta5-C5Me5)(mu4-N)(mu3-eta2-PhC2Ph)(mu-I)2I] (6) was isolated from the reaction of 1 with [Cp*Co(CO)I2] heated under reflux in THF, in which a Ru-Ru wing edge is missing. Two bridging and one terminal iodides were found to be placed along the two Ru-Ru wing edges and at a hinge Ru atom, respectively. The redox properties of the selected compounds in this study were investigated by using cyclic voltammetry and controlled potential coulometry. 15N magnetic resonance spectroscopy studies were also performed on these clusters.  相似文献   

10.
Reaction of the aminophosphinidene complex [Ru5(CO)15(mu 4-PNPri2)] 1 with [PPN][NO2] (PPN = Ph3P=N=PPh3) led to the mixed nitrosyl/phosphinidene cluster complex [PPN][Ru5(CO)13(mu-NO)(mu 4-PNPri2)] 2 which is transformed into the novel nitrene/phosphinidene cluster [Ru5(CO)10(mu-CO)2(mu 3-CO)(mu 4-NH)(mu 3-PNPri2)] 3 via treatment with triflic acid.  相似文献   

11.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

12.
The reaction of [Ru(3)(CO)(12)] with Ph(3)SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-SnPh(2))(SnPh(3))(2)] which consists of a SnPh(2) stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh(3) ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) A] and very long bonds to the other two [Sn-Ru 3.074(1) A]. The germanium compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-GePh(2))(GePh(3))(2)] was obtained from the reaction of [Ru(3)(CO)(12)] with Ph(3)GeSPh and has a similar structure to that of as evidenced by spectroscopic data. Treatment of [Os(3)(CO)(10)(MeCN)(2)] with Ph(3)SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os(3)(CO)(9)(mu-SPh)(mu(3)-SnPh(2))(MeCN)(eta(1)-C(6)H(5))] . Cluster has a superficially similar planar metal core, but with a different bonding mode with respect to that of . The Ph(2)Sn group is bonded most closely to Os(2) and Os(3) [2.786 and 2.748 A respectively] with a significantly longer bond to Os(1), 2.998 A indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru(3)(CO)(10)(mu-dppm)] with Ph(3)SnSPh afforded [Ru(3)(CO)(6)(mu-dppm)(mu(3)-S)(mu(3)-SPh)(SnPh(3))] . Compound contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph(3)Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand.  相似文献   

13.
Three new compounds, Ru4(mu4-GePh)2(mu-GePh2)2(mu-CO)2(CO)8 (11), Ru4(mu4-GePh)2(mu-GePh2)3(mu-CO)(CO)8 (12), and Ru4(mu4-GePh)2(mu-GePh2)4(CO)8 (13), were obtained from the reaction of H(4)Ru(4)(CO)12 with excess Ph(3)GeH in octane (11 and 12) or decane (13) reflux. Compound 11 was converted to compound 13 by reaction with Ph(3)GeH by heating solutions in nonane solvent to reflux. Compounds 11-13 each contain a square-type arrangement of four Ru atoms capped on each side by a quadruply bridging GePh ligand to form an octahedral geometry for the Ru(4)Ge(2) group. Compound 11 also contains two edge-bridging GePh(2) groups on opposite sides of the cluster and two bridging carbonyl ligands. Compound 12 contains three edge-bridging GePh(2) groups and one bridging carbonyl ligand. Compound 13 contains four bridging GePh(2) groups, one on each edge of the Ru4 square. The reaction of H(4)Os(4)(CO)12 with excess Ph(3)GeH in decane at reflux yielded two new tetraosmium cluster complexes, Os4(mu4-GePh)2(mu-GePh2)3(mu-CO)(CO)8 (14) and Os4(mu4-GePh)2(mu-GePh(2))4(CO)8 (15). These compounds are structurally similar to compounds 12 and 13, respectively.  相似文献   

14.
The synthesis and reactivity of the thiophyne and furyne clusters [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, O) is reported. Addition of P(C4H3E)3 to [Ru3(CO)10(mu-dppm)] (1) at room temperature in the presence of Me3NO gives simple substitution products [Ru3(CO)9(mu-dppm)(P(C4H3E)3)] (E = S, 2; E = O, 3). Mild thermolysis in the presence of further Me3NO affords the thiophyne and furyne complexes [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 4; E = O, 6) resulting from both carbon-hydrogen and carbon-phosphorus bond activation. In each the C4H2E (E = S, O) ligand donates 4-electrons to the cluster and the rings are tilted with respect to the mu-dppm and the phosphido-bridged open triruthenium unit. Heating 4 at 80 degrees C leads to the formation of the ring-opened cluster [Ru3(CO)5(mu-CO)(mu-dppm)(mu3-eta3-SC4H3)(mu-P(C4H3S)2)] (5) resulting from carbon-sulfur bond scission and carbon-hydrogen bond formation and containing a ring-opened mu3-eta3-1-thia-1,3-butadiene ligand. In contrast, a similar thermolysis of 3 affords the phosphinidene cluster [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2O)(mu3-P(C4H3O))] (7) resulting from a second phosphorus-carbon bond cleavage and (presumably) elimination of furan. Treatment of 4 and 6 with PPh3 affords the simple phosphine-substituted products [Ru3(CO)6(PPh3)(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 8; E = O, 9). Both thiophyne and furyne clusters 4 and 6 readily react with hydrogen bromide to give [Ru3(CO)6Br(mu-Br)(mu-dppm)(mu3-eta2-eta1-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 10; E = O, 11) containing both terminal and bridging bromides. Here the alkynes bind in a highly unsymmetrical manner with one carbon acting as a bridging alkylidene and the second as a terminally bonded Fisher carbene. As far as we are aware, this binding mode has only previously been noted in ynamine complexes or those with metals in different oxidation states. The crystal structures of seven of these new triruthenium clusters have been carried out, allowing a detailed analysis of the relative orientations of coordinated ligands.  相似文献   

15.
Adams RD  Captain B  Fu W 《Inorganic chemistry》2003,42(4):1328-1333
The reaction of Ru(5)(CO)(15)(mu(5)-C), 1, with Ph(3)GeH at 150 degrees C has yielded two new germanium-rich pentaruthenium cluster complexes: Ru(5)(CO)(11)(mu-CO)(mu-GePh(2))(3)(mu(5)-C), 2; Ru(5)(CO)(11)(mu;-GePh(2))(4)(mu(5)-C), 3. Both compounds contain square pyramidal Ru(5) clusters with GePh(2) groups bridging three and four of the edges of the Ru(5) square base, respectively. When treated with 1 equiv of Ph(3)GeH at 150 degrees C compound 2 is converted to 3. Reaction of 3 with H(2) at 150 degrees C yielded Ru(5)(CO)(10)(mu-GePh(2))(4)(mu(5)-C)(mu-H)(2), 4, containing two hydride ligands and one less CO ligand. Reaction of 4 with hydrogen at 150 degrees C yielded the compound Ru(5)(CO)(10)(mu-GePh(2))(2)(mu(3)-GePh)(2)(mu(3)-H)(mu(4)-CH), 5, by loss of benzene and conversion of two of the bridging GePh(2) groups into triply bridging GePh groups. Compound 5 contains one triply bridging hydride ligand and a quadruply bridging methylidyne ligand formed by addition of one hydrogen atom to the carbido carbon atom.  相似文献   

16.
Reaction of 2-(arylazo)phenols with [Ru(PPh(3))(2)(CO)(2)Cl(2)] affords a family of organometallic complexes of ruthenium(II) of type [Ru(PPh(3))(2)(CO)(CNO-R)], where the 2-(arylazo)phenolate ligand (CNO-R; R = OCH(3), CH(3), H, Cl, and NO(2)) is coordinated to the metal center as tridentate C,N,O-donor. Another group of intermediate complexes of type [Ru(PPh(3))(2)(CO)(NO-R)(H)] has also been isolated, where the 2-(arylazo)phenolate ligand (NO-R) is coordinated to the metal center as bidentate N,O-donor. Structures of the [Ru(PPh(3))(2)(CO)(NO-OCH(3))(H)] and [Ru(PPh(3))(2)(CO)(CNO-OCH(3))] complexes have been determined by X-ray crystallography. All the complexes are diamagnetic and show characteristic (1)H NMR signals and intense MLCT transitions in the visible region. Both the [Ru(PPh(3))(2)(CO)(NO-R)(H)] and [Ru(PPh(3))(2)(CO)(CNO-R)] complexes show two oxidative responses on the positive side of SCE.  相似文献   

17.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

18.
The reactivity of the cluster family [Ru(3)(CO)(12-x)(L)(x)] (in which L=PMe(3), PMe(2)Ph, PPh(3) and PCy(3), x=1-3) towards hydrogen is described. When x=2, three isomers of [Ru(3)(H)(mu-H)(CO)(9)(L)(2)] are formed, which differ in the arrangement of their equatorial phosphines. Kinetic studies reveal the presence of intra- and inter-isomer exchange processes with activation parameters and solvent effects indicating the involvement of ruthenium-ruthenium bond heterolysis and CO loss, respectively. When x=3, reaction with H(2) proceeds to form identical products to those found with x=2, while when x=1 a single isomer of [Ru(3)(H)(mu-H)(CO)(10)(L)] is formed. Species [Ru(3)(H)(mu-H)(CO)(9)(L)(2)] have been shown to play a kinetically significant role in the hydrogenation of an alkyne substrate through initial CO loss, with rates of H(2) transfer being explicitly determined for each isomer. A less significant secondary reaction involving loss of L yields a detectable product that contains both a pendant vinyl unit and a bridging hydride ligand. Competing pathways that involve fragmentation to form [Ru(H)(2)(CO)(2)(L)(alkyne)] are also observed and shown to be favoured by nonpolar solvents. Kinetic data reveal that catalysis based on [Ru(3)(CO)(10)(PPh(3))(2)] is the most efficient although [Ru(3)(H)(mu-H)(CO)(9)(PMe(3))(2)] corresponds to the most active of the detected intermediates.  相似文献   

19.
A wide variety of ruthenium porphyrin carbene complexes, including [Ru(tpfpp)(CR(1)R(2))] (CR(1)R(2) = C(p-C(6)H(4)Cl)(2) 1 b, C(p-C(6)H(4)Me)(2) 1 c, C(p-C(6)H(4)OMe)(2) 1 d, C(CO(2)Me)(2) 1 e, C(p-C(6)H(4)NO(2))CO(2)Me 1 f, C(p-C(6)H(4)OMe)CO(2)Me 1 g, C(CH==CHPh)CO(2)CH(2)(CH==CH)(2)CH(3) 1 h), [Ru(por)(CPh(2))] (por=tdcpp 2 a, 4-Br-tpp 2 b, 4-Cl-tpp 2 c, 4-F-tpp 2 d, tpp 2 e, ttp 2 f, 4-MeO-tpp 2 g, tmp 2 h, 3,4,5-MeO-tpp 2 i), [Ru(por)[C(Ph)CO(2)Et]] (por=tdcpp 2 j, tmp 2 k), [Ru(tpfpp)(CPh(2))(L)] (L = MeOH 3 a, EtSH 3 b, Et(2)S 3 c, MeIm 3 d, OPPh(3) 3 e, py 3 f), and [Ru(tpfpp)[C(Ph)CO(2)R](MeOH)] (R = CH(2)CH==CH(2) 4 a, Me 4 b, Et 4 c), were prepared from the reactions of [Ru(por)(CO)] with diazo compounds N(2)CR(1)R(2) in dichloromethane and, for 3 and 4, by further treatment with reagents L. A similar reaction of [Os(tpfpp)(CO)] with N(2)CPh(2) in dichloromethane followed by treatment with MeIm gave [Os(tpfpp)(CPh(2))(MeIm)] (3 d-Os). All these complexes were characterized by (1)H NMR, (13)C NMR, and UV/Vis spectroscopy, mass spectrometry, and elemental analyses. X-ray crystal structure determinations of 1 d, 2 a,i, 3 a, b, d, e, 4 a-c, and 3 d-Os revealed Ru==C distances of 1.806(3)-1.876(3) A and an Os==C distance of 1.902(3) A. The structure of 1 d in the solid state features a unique "bridging" carbene ligand, which results in the formation of a one-dimensional coordination polymer. Cyclic voltammograms of 1 a-c, g, 2 a-d, g-k, 3 b-d, 4 a, b, and 3 d-Os show a reversible oxidation couple with E(1/2) values in the range of 0.06-0.65 V (vs Cp(2)Fe(+/0)) that is attributable to a metal-centered oxidation. The influence of carbene substituents, porphyrin substituents, and trans-ligands on the Ru==C bond was examined through comparison of the chemical shifts of the pyrrolic protons in the porphyrin macrocycles ((1)H NMR) and the M==C carbon atoms ((13)C NMR), the potentials of the metal-centered oxidation couples, and the Ru==C distances among the various ruthenium porphyrin carbene complexes. A direct comparison among iron, ruthenium, and osmium porphyrin carbene complexes is made.  相似文献   

20.
The unsaturated complexes [W2Cp2(mu-PR2)(mu-PR'2)(CO)2] (Cp = eta5-C5H5; R = R' = Ph, Et; R = Et, R' = Ph) react with HBF4.OEt2 at 243 K in dichloromethane solution to give the corresponding complexes [W2Cp2(H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which contain a terminal hydride ligand. The latter rearrange at room temperature to give [W2Cp2(mu-H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which display a bridging hydride and carbonyl ligands arranged parallel to each other (W-W = 2.7589(8) A when R = R' = Ph). This explains why the removal of a proton from the latter gives first the unstable isomer cis-[W2Cp2(mu-PPh2)2(CO)2]. The molybdenum complex [Mo2Cp2(mu-PPh2)2(CO)2] behaves similarly, and thus the thermally unstable new complexes [Mo2Cp2(H)(mu-PPh2)2(CO)2]BF4 and cis-[Mo2Cp2(mu-PPh2)2(CO)2] could be characterized. In contrast, related dimolybdenum complexes having electron-rich phosphide ligands behave differently. Thus, the complexes [Mo2Cp2(mu-PR2)2(CO)2] (R = Cy, Et) react with HBF4.OEt2 to give first the agostic type phosphine-bridged complexes [Mo2Cp2(mu-PR2)(mu-kappa2-HPR2)(CO)2]BF4 (Mo-Mo = 2.748(4) A for R = Cy). These complexes experience intramolecular exchange of the agostic H atom between the two inequivalent P positions and at room-temperature reach a proton-catalyzed equilibrium with their hydride-bridged tautomers [ratio agostic/hydride = 10 (R = Cy), 30 (R = Et)]. The mixed-phosphide complex [Mo2Cp2(mu-PCy2)(mu-PPh2)(CO)2] behaves similarly, except that protonation now occurs specifically at the dicyclohexylphosphide ligand [ratio agostic/hydride = 0.5]. The reaction of the agostic complex [Mo2Cp2(mu-PCy2)(mu-kappa2-HPCy2)(CO)2]BF4 with CN(t)Bu gave mono- or disubstituted hydride derivatives [Mo2Cp2(mu-H)(mu-PCy2)2(CO)2-x(CNtBu)x]BF4 (Mo-Mo = 2.7901(7) A for x = 1). The photochemical removal of a CO ligand from the agostic complex also gives a hydride derivative, the triply bonded complex [Mo2Cp2(H)(mu-PCy2)2(CO)]BF4 (Mo-Mo = 2.537(2) A). Protonation of [Mo2Cp2(mu-PCy2)2(mu-CO)] gives the hydroxycarbyne derivative [Mo2Cp2(mu-COH)(mu-PCy2)2]BF4, which does not transform into its hydride isomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号