首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New experimental vapor–liquid equilibrium (VLE) data for the n-butane + methanol binary system are reported over a wide temperature range from 323.2 to 443.2 K and pressures up to 5.4 MPa. A static–analytic apparatus, taking advantage of two pneumatic capillary samplers, was used. The phase equilibrium data generated in this work are in relatively good agreement with previous data reported in the literature. Three different thermodynamic models have been used to represent the new experimental data. The first model is the cubic-based Peng–Robinson equation of state (EoS) combined with the Wong–Sandler mixing rules. The two other models are the non-cubic SAFT-VR and PC-SAFT equations of state. Temperature-dependent binary interaction parameters have been adjusted to the new data. The three models accurately represent the new experimental data, but deviations are seen to increase at low temperature. A similar evolution of the binary parameters with respect to temperature is observed for the three models. In particular a discontinuity is observed for the kij values at temperatures close to the critical point of butane, indicating the effects of fluctuations on the phase equilibria close to critical points.  相似文献   

2.
To simulate cyclohexane oxidation reactors using a dynamic model linking kinetics, thermodynamics and hydrodynamics, the acquisition and modeling of vapor–liquid equilibria of the key components, under the process conditions, are essential. In this work, the vapor–liquid equilibria of the cyclohexane + cyclohexanol system were determined at temperatures 424, 444, 464 and 484 K. The measurements were carried out using an apparatus based on the “static-analytic” method, with two ROLSI™ pneumatic capillary samplers. The generated data are successfully correlated using two equations of state, the Peng–Robinson (PR) and the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT). A comparison of model performances reveals the former being better in data representation, while the latter has a broader applicability over larger range of temperatures.  相似文献   

3.
Vapor–liquid equilibrium data for the difluoromethane (R32) + pentafluoroethane (R125) + propane (R290) ternary mixture were measured at 5 isotherms between 263.15 K and 323.15 K. The measurement was carried out using a circulation-type apparatus recently developed, which was validated with binary mixtures. With binary interaction parameters obtained for the three corresponding binary mixtures, VLE modeling and prediction were performed for the ternary mixture using the Peng–Robinson equation of state with the classical mixing rules and MHV1 mixing rules. Hou's group contribution model for VLE of new refrigerant mixtures was further tested with the experimental data for the ternary system. The predicted pressure and vapor phase composition were compared with experimental ones.  相似文献   

4.
A static-analytical apparatus with visual sapphire windows and pneumatic capillary samplers has been used to obtain new vapor–liquid equilibrium data for the N2 + n-octane system over the temperature range from (344.5 to 543.5) K and at pressures up to 50 MPa. Equilibrium phase compositions and vapor–liquid equilibrium ratios are reported. The new results were compared with solubility data reported by other authors. The comparison showed that the solubility data reported in this work at 344.5 K are in good agreement with those determined by others at 344.3 K. The experimental data were modeled with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature-independent interaction parameter. Results from the modeling effort showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the N2 + n-octane system.  相似文献   

5.
Isothermal vapor–liquid equilibrium (VLE) for tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K was measured with a recirculation still. Liquid- and vapor-phase compositions were determined with gas chromatography. All systems exhibit a small positive deviation from Raoult's law and show nearly ideal behavior. All VLE measurements passed the point test used. The experimental results were correlated with the Wilson model and compared with COSMO-SAC predictive models. COSMO-SAC predictions show a slight negative deviation from Raoult's law for all systems measured. Raoult's law can be used to describe all systems studied. The activity coefficients at infinite dilution are presented.  相似文献   

6.
Isothermal vapor–liquid equilibrium (VLE) for tetrahydrothiophene + 2,2,4-trimethylpentane and tetrahydrothiophene + 2,4,4-trimethyl-1-pentene at 358.15 and 368.15 K were measured with a circulation still. All systems studied exhibit positive deviation from Raoult's law. No azeotropic behavior was found in all systems at the measured temperatures. The experimental results were correlated with the Wilson model and compared to COSMO-SAC predictive model. Analyses of liquid and vapor phase composition were determined with gas chromatography. All VLE measurements passed the three thermodynamic consistency tests used. The activity coefficients at infinite dilution are also presented.  相似文献   

7.
Experimental liquid–liquid equilibrium (LLE) of the water–acetic acid–sec-butyl acetate ternary system was investigated at 298.15, 303.15, 308.15 and 313.15 K and at atmospheric pressure. Separation factors were also evaluated for the immiscibility region. The NRTL and UNIQUAC models were applied to fit the experimental data for the ternary system. The binary interaction parameters obtained from both models were found to be successfully correlated with the equilibrium compositions. The UNIFAC group contribution method was employed to predict the observed ternary LLE data. It was found that four types of the UNIFAC model (UNIFAC, UNIFAC-LL, UNIFAC-DMD, and UNIFAC-LBY) did not provide a good prediction of the LLE data for this ternary system.  相似文献   

8.
Liquid–liquid equilibrium data for the ternary system water + 1-propanol + 1-pentanol have been determined experimentally at 298.15 and 323.15 K using “static–analytic” apparatus involving ROLSI™ samplers. The experimental data are correlated considering both NRTL and UNIQUAC activity coefficient models. The results obtained show the ability of both models for the determination of liquid–liquid equilibrium data of the studied system. The reliability of the experimental tie-line data is determined through the Othmer–Tobias and Bachman equations.  相似文献   

9.
Vapor–liquid equilibria (VLE) for the n-hexane + 2-isopropoxyethanol and n-heptane + 2-isopropoxyethanol (at 60, 80, and 100 kPa) systems were measured. Two systems present positive deviations from ideal behavior. And the system n-heptane + 2-isopropoxyethanol shows a minimum boiling azeotrope at all pressures. Experimented data have been correlated with the two term virial equation for vapor-phase fugacity coefficients and the three suffix Margules equation, Wilson, NRTL, and UNIQUAC equations for liquid-phase activity coefficients. Experimental VLE data show excellent agreements with models.  相似文献   

10.
Isothermal vapor–liquid equilibria at 333.15 K, 343.15 K and 353.15 K for three binary mixtures of o-xylene, m-xylene and p-xylene individually mixed with N-methylformamide (NMF), have been obtained at pressures ranged from 0 kPa to 101.3 kPa over the whole composition range. The Wilson, NRTL and UNIQUAC activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Peng–Robinson equation of state in calculating the vapor mole fraction. Liquid and vapor densities were measured by using two vibrating tube densitometers. The excess molar volumes of the liquid phase were also determined. Three systems of o-xylene + NMF, m-xylene + NMF and p-xylene + NMF mixtures present large positive deviations from the ideal solution and belong to endothermic mixings because their excess Gibbs energies are positive. Temperature dependent intermolecular parameters in the NRTL model correlation were finally obtained in this study.  相似文献   

11.
Experimental vapor–liquid equilibria for the systems carbon dioxide + 1-butanol and carbon dioxide + 2-butanol were obtained from 313 to 363 K via a static-analytic set-up. A vibrating U-tube densitometer was coupled to this apparatus to perform simultaneous measurements of both saturated densities of the vapor and liquid phases. The suitability of this apparatus was checked by comparing the experimental vapor–liquid equilibrium and saturated density results with the literature data. The experimental vapor–liquid equilibrium data were correlated using the Peng–Robinson equation of state coupled to the Wong–Sandler mixing rules with good agreement; however densities using the same model were not satisfactorily represented.  相似文献   

12.
Consistent vapor–liquid equilibria (VLE) data were determined for the binary systems 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa, with the purpose of studying the influence of the pressure in the separation of these binary mixtures. The two systems show a small positive deviation from ideality and do not present an azeotrope. VLE data for the binary systems have been correlated by the Wilson, UNIQUAC and NRTL equations with good results and have been predicted by the UNIFAC group contribution method.  相似文献   

13.
Vapor–liquid equilibria (VLE) for the n-heptane + ethylene glycol monopropyl ether and n-octane + ethylene glycol monopropyl ether systems were measured. Isobaric VLE measurements of the associating fluid mixtures were conducted at several pressures (60 kPa, 80 kPa and 100 kPa) using Fischer VLE 602 equipment. The experimental data were correlated using a two-term virial equation for vapor-phase fugacity coefficients and the three suffix Margules equation, Wilson, NRTL, and UNIQUAC models for liquid-phase activity coefficients. The results show good agreement with the variety of models.  相似文献   

14.
Solubility data and the density of equilibrium liquid phase for the ternary system m-nitrobenzoic acid + p-nitrobenzoic acid + acetone were determined at 283.1 K and 313.1 K, and the phase diagrams of the system were constructed. Two solid phases, pure solid m-nitrobenzoic acid and p-nitrobenzoic acid are confirmed by the Schreinemaker's wet residue method. The crystallization regions of m-nitrobenzoic acid and p-nitrobenzoic acid increase as the temperature decreases. At the same temperature, the crystallization region of p-nitrobenzoic acid is larger than that of m-nitrobenzoic acid.  相似文献   

15.
16.
Isothermal vapor–liquid equilibrium data at 333.15 K are measured for the binary system tert-amyl methyl ether + ethanol and tert-amyl methyl ether + 2,2,4-trimethylpentane and for ternary system tert-amyl methyl ether + ethanol + 2,2,4-trimethylpentane by using headspace gas chromatography. The experimental vapor–liquid equilibrium data were correlated with GE models (Margules, van Laar, Wilson, NRTL, UNIQUAC) equations. The excess volume and deviations in molar refractivity data are also reported for the same binary and ternary systems at 298.15 K. These data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. The experimental ternary excess volume and deviations in molar refractivity data, were also compared with the estimated values from the binary contribution models of Tsao–Smith, Kohler, Rastogi and Radojkovi?.  相似文献   

17.
The vapor–liquid equilibria for methanol + glycerol and ethanol + glycerol systems were measured by a flow method at 493–573 K. The pressure conditions focused in this work were 3.03–11.02 MPa for methanol + glycerol system and 2.27–8.78 MPa for ethanol + glycerol system. The mole fractions of alcohol in vapor phase are close to unity at the pressures below 7.0 MPa for both systems. The pressures of liquid saturated lines of the liquid phase for methanol + glycerol and ethanol + glycerol systems are higher than that for the mixtures containing alcohol and biodiesel compound, methyl laurate or ethyl laurate.  相似文献   

18.
The phase behavior of six ternary systems involving an aromatic hydrocarbon (benzene, toluene or m-xylene), an aliphatic hydrocarbon (nonane or undecane), and an ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate, [omim][PF6]) was experimentally studied at 298.15 K and atmospheric pressure, totalizing 26 tie-lines. The main goal is to determine if [omim][PF6] is a good solvent for the separation of the aromatic and aliphatic compounds, a common operation in the processing of reformed naphtha. All the ternary diagrams are of type 1, with high and wide two-phase regions, which show that [omim][PF6] is a good solvent for the extraction of aromatic from aliphatic hydrocarbons. The Othmer–Tobias correlation was used for evaluation of the quality of the tie-line data, with good results. The data were correlated with the NRTL model for the activity coefficient, with estimation of new interaction energy parameters by using a modified Simplex method and a composition-based objective function. The results, expressed by root mean square deviations between experimental and calculated compositions, are very satisfactory.  相似文献   

19.
An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer has been used to determine vapor–liquid (VLE) and vapor–liquid–liquid (VLLE) equilibria. Consistent data have been obtained for the ternary water + ethanol + p-xylene system at 101.3 kPa for temperatures in the range of 351.16–365.40 K. Experimental results have been used to check the accuracy of the UNIFAC, UNIQUAC and NRTL models in the liquid–liquid region of importance in the dehydration of ethanol by azeotropic distillation.  相似文献   

20.
This study aims to make detailed measurements of the solubility data for perfluoroalkane + n-alkane systems. Using a laser-scattering technique developed in our laboratory, we determined the liquid–liquid equilibria (LLE) for three binary mixtures: perfluorohexane + n-hexane, perfluorohexane + n-octane, and perfluorooctane + n-octane. The experimental LLE data were represented by the NRTL equation. In addition, the activity coefficients obtained from the experimental LLE data were compared with those obtained from the vapor–liquid equilibrium (VLE) data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号