首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isothermal vapor–liquid equilibrium (VLE) of the following systems was measured with a recirculation still: 1-butanethiol + methylcyclopentane at 343.15 K, 1-butanethiol + 2,2,4-trimethylpentane at 368.15 K, 3-methylthiophene + toluene at 383.15 K, 3-methylthiophene + o-xylene at 383.15 K, and 3-methylthiophene + 1,2,4-trimethylbenzene at 383.15 K. 1-Butanethiol + methylcyclopentane and 1-butanethiol + 2,2,4-trimethylpentane systems exhibit positive deviation from Raoult's law, whereas systems containing 3-methylthiophene in aromatic hydrocarbons exhibit only slight positive deviation from Raoult's law. A maximum pressure azeotrope was found in the system 1-butanethiol + 2,2,4-trimethylpentane (x1 = 0.548, P = 100.65 kPa, T = 368.15 K). The experimental results were correlated with the Wilson model and compared with original UNIFAC and COSMO-SAC predictive models. Raoult's law can be used to describe the behavior of 3-methylthiophene in aromatic hydrocarbons at the experimental conditions in this work. Liquid and vapor-phase composition were determined with gas chromatography. All measured data sets passed the thermodynamic consistency tests applied. The activity coefficients at infinite dilution are also presented.  相似文献   

2.
Isothermal vapor–liquid equilibrium (VLE) for dimethyl disulfide + toluene, dimethyl disulfide + 2,2,4-trimethylpentane, dimethyl disulfide + 2,4,4-trimethyl-1-pentene, and diethyl disulfide + 2,2,4-trimethylpentane at 368.15 K were measured with a recirculation still. All systems exhibit positive deviation from Raoult's law. Dimethyl disulfide + toluene system shows only slight positive deviation from Raoult's law, while dimethyl disulfide + 2,2,4-trimethylpentane, dimethyl disulfide + 2,4,4-trimethyl-1-pentene, and diethyl disulfide + 2,2,4-trimethylpentane systems show larger positive deviation from Raoult's law. Maximum pressure azeotropes were found in systems: dimethyl disulfide + toluene (x1 = 0.632, P = 66.4 kPa, T = 368.15 K), dimethyl disulfide + 2,2,4-trimethylpentane (x1 = 0.311, P = 95.8 kPa, T = 368.15 K), and dimethyl disulfide + 2,4,4-trimethyl-1-pentene (x1 = 0.295, P = 88.4 kPa, T = 368.15 K). No azeotropic behavior was observed in system diethyl disulfide + 2,2,4-trimethylpentane at 368.15 K. The experimental results were correlated with the Wilson model. Original UNIFAC was used to predict dimethyl disulfide + 2,2,4-trimethylpentane and diethyl disulfide + 2,2,4-trimethylpentane systems at 368.15 K. COSMO-SAC predictive model was used to predict infinite dilution activity coefficients for all systems measured. Liquid and vapor-phase composition were determined with gas chromatography. All VLE measurements passed the thermodynamic consistency tests applied. The activity coefficients at infinite dilution are also presented.  相似文献   

3.
Isothermal vapor–liquid equilibrium (VLE) for tetrahydrothiophene + 2,2,4-trimethylpentane and tetrahydrothiophene + 2,4,4-trimethyl-1-pentene at 358.15 and 368.15 K were measured with a circulation still. All systems studied exhibit positive deviation from Raoult's law. No azeotropic behavior was found in all systems at the measured temperatures. The experimental results were correlated with the Wilson model and compared to COSMO-SAC predictive model. Analyses of liquid and vapor phase composition were determined with gas chromatography. All VLE measurements passed the three thermodynamic consistency tests used. The activity coefficients at infinite dilution are also presented.  相似文献   

4.
Isothermal vapor-liquid equilibrium (VLE) of the following systems was measured with a recirculation still: diethyl sulfide + ethanol at 343.15 K, diethyl sulfide + 1-propanol at 358.15 K, and diethyl sulfide + propyl acetate at 363.15 K. Diethyl sulfide + ethanol at 343.15 K and diethyl sulfide + 1-propanol at 358.15 K systems exhibit positive deviation from Raoult's law, whereas diethyl sulfide + propyl acetate at 363.15 K system exhibits only slight positive deviation from Raoult's law. A maximum pressure azeotrope was found in the systems diethyl sulfide + ethanol (x1 = 0.372, P = 88.4 kPa, T = 343.15 K) and diethyl sulfide + 1-propanol (x1 = 0.640, P = 96.8 kPa, T = 358.15 K). No azeotropic behavior was found in diethyl sulfide + propyl acetate system at 363.15 K. The experimental results were correlated with the Wilson model and compared to COSMO-SAC predictive model. Liquid and vapor phase compositions were determined with gas chromatography. All measured data sets passed the thermodynamic consistency tests. The activity coefficients at infinite dilution are also presented.  相似文献   

5.
Isobaric vapor–liquid equilibrium data at 95.96 kPa for the three binary systems of 2,2,4-trimethylpentane with methyl tert-butyl ether, di-isopropyl ether and dimethoxymethane are determined. A Swietoslawski type ebulliometer is used for the measurements. The experimental Tx data are used to estimate Wilson parameters and the parameters, in turn, are used to calculate vapor phase compositions and activity coefficients. All the systems studied here do not exhibit azeotropes and behave like non-ideal solutions.  相似文献   

6.
Consistent vapour–liquid equilibrium data for the ternary systems diisopropyl ether + isopropyl alcohol + 2,2,4-trimethylpentane and diisopropyl ether + isopropyl alcohol + n-heptane are reported at 101.3 kPa. The vapour–liquid equilibrium data have been correlated by Wilson, NRTL and UNIQUAC equations. The ternary systems do not present ternary azeotropes.  相似文献   

7.
A number of applications with ionic liquids (ILs) and hydrofluorocarbon gases have recently been proposed. Detailed phase equilibria and modeling are needed for their further development. In this work, vapor–liquid equilibrium, vapor–liquid–liquid equilibrium, and mixture critical points of imidazolium ionic liquids with the hydrofluorocarbon refrigerant gas, 1,1,1,2-tetrafluoroethane (R-134a) was measured at temperatures of 25 °C, 50 °C, 75 °C and pressure up to 143 bar. The ionic liquids include 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ([HMIm][Tf2N]), 1-hexyl-3-methyl-imidazolium hexafluorophosphate ([HMIm][PF6]), and 1-hexyl-3-methyl-imidazolium tetrafluoroborate ([HMIm][BF4]). The effects of the anion and cation on the solubility were investigated with the anion having greatest impact. [HMIm][Tf2N] demonstrated the highest solubility of R-134a. The volume expansion and molar volume were also measured for the ILs and R-134a. The Peng–Robinson Equation of State with van der Waals 2-parameter mixing rule with estimated IL critical points were employed to model and correlate the experimental data. The models predict the vapor–liquid equilibrium and vapor–liquid–liquid equilibrium pressure very well. However, the mixture critical points predictions are consistently lower than experimental values.  相似文献   

8.
Isothermal vapor–liquid equilibrium data determined by the static method at 303.15 K are reported for the binary systems propyl vinyl ether + 1-propanol, 1-propanol + 2,2,4-trimethylpentane and propyl vinyl ether + 2,2,4-trimethylpentane and also for the ternary system propyl vinyl ether + 1-propanol + 2,2,4-trimethyl-pentane. Additionally, new excess volume data are reported for the same systems at 298.15 K. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different GE models and excess molar volume data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively.  相似文献   

9.
Vapor–liquid equilibria (VLE) and excess enthalpies (HE) were measured for a variety of alkanes, alkenes, aromatics, alcohols, ketones and water in several ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM]+[BTI], 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [BMIM]+[BTI], 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [HMIM]+[BTI] and 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [OMIM]+[BTI], covering the temperature range from 323.15 to 413.15 K. The new data were used together with the already available experimental data for imidazolium compounds to fit the required group interaction parameters for modified UNIFAC (Dortmund). The results show that in the future modified UNIFAC (Dortmund) can be applied successfully also for systems with ionic liquids.  相似文献   

10.
A flow-type method was adopted to measure the vapor–liquid equilibria for methanol + methyl laurate and methanol + methyl myristate systems at 493–543 K, near the critical temperature of methanol (Tc = 512.64 K), and 2.16–8.49 MPa. The effect of temperature and fatty acid methyl esters to the phase behavior was discussed. The mole fractions of methanol in liquid phase are almost the same for both systems. In vapor phase, the mole fractions of methanol are very close to unity at all temperatures. The present vapor–liquid equilibrium data were correlated by PRASOG. A binary parameter was introduced to the combining rule of size parameter. The binary parameters of methanol + fatty acid methyl ester systems were determined by fitting the present experimental data. The correlated results are in good agreement with the experimental data. The vapor–liquid equilibria for methanol + methyl laurate + glycerol and methanol + methyl myristate + glycerol ternary systems were also predicted using the methanol + fatty acid methyl ester binary parameters. The mole fractions of methanol in vapor phase are around unity even if glycerol is included in the systems.  相似文献   

11.
Isothermal vapor–liquid equilibrium data at 333.15 K are measured for the binary system ethanol + 2,2,4-trimethylpentane and for ternary system di-methyl carbonate (DMC) + ethanol + 2,2,4-trimethylpentane by using headspace gas chromatography. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different activity coefficient models. Excess volume and deviations in molar refractivity data are also reported for the binary systems DMC + ethanol and DMC + 2,2,4-trimethylpentane and the ternary system DMC + ethanol + 2,2,4-trimethylpentane at 298.15 K. These data were correlated with the Redlich-Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. The ternary excess volume and deviations in molar refractivity data were also compared with estimated values from the binary contribution models of Tsao–Smith, Kohler, Rastogi and Radojkovi?.  相似文献   

12.
Isothermal vapor–liquid equilibrium data at 333.15 K are measured for the binary system tert-amyl methyl ether + ethanol and tert-amyl methyl ether + 2,2,4-trimethylpentane and for ternary system tert-amyl methyl ether + ethanol + 2,2,4-trimethylpentane by using headspace gas chromatography. The experimental vapor–liquid equilibrium data were correlated with GE models (Margules, van Laar, Wilson, NRTL, UNIQUAC) equations. The excess volume and deviations in molar refractivity data are also reported for the same binary and ternary systems at 298.15 K. These data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. The experimental ternary excess volume and deviations in molar refractivity data, were also compared with the estimated values from the binary contribution models of Tsao–Smith, Kohler, Rastogi and Radojkovi?.  相似文献   

13.
Consistent vapor–liquid equilibria (VLE) data were determined for the binary systems 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa, with the purpose of studying the influence of the pressure in the separation of these binary mixtures. The two systems show a small positive deviation from ideality and do not present an azeotrope. VLE data for the binary systems have been correlated by the Wilson, UNIQUAC and NRTL equations with good results and have been predicted by the UNIFAC group contribution method.  相似文献   

14.
Vapor pressure data were measured for water, methanol and ethanol as well as their binary mixtures with an ionic liquid (IL) 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]) at varying temperature and IL-content ranging from mass fraction of 0.10–0.70 by a quasi-static method. The vapor pressure data for the IL-containing binary systems were correlated using NRTL equation with average absolute relative deviation (ARD) within 0.0076, and the binary NRTL parameters was used for predicting the vapor pressure of the IL-containing ternary systems with reasonable accuracy. In addition, the infinite activity coefficients of solvents in [EMIM][DMP] and isobaric vapor–liquid equilibrium for IL-containing ternary systems at 101.325 kPa and mass fraction of IL being 0.5 were predicted with the regressed NRTL parameters. The results indicate that ionic liquid [EMIM][DMP] can depress the volatility of the solvents of water, methanol and ethanol but to a varying degree, leading to the variation of relative volatility of a solvent and even removal of azeotrope for water–ethanol mixture.  相似文献   

15.
The thermodynamic consistency of binary vapor–liquid equilibrium data has been examined for 46 binary alcohol + hydrocarbon systems with 310 data sets in total (145 isobaric and 165 isothermal sets) using the PAI test proposed in our previous study. The PAI test permits an overall check of the data by combining three tests: a point test, an area test, and an infinite dilution test. In this work, the PAI test was incorporated with the NRTL equation for fitting data. The results of the PAI test for the vapor–liquid equilibrium data showed that the PAI test was able to strictly select reliable data.  相似文献   

16.
Deacidification of vegetable oils can be performed using liquid–liquid extraction as an alternative method to the classical chemical and physical refining processes. This paper reports experimental data for systems containing refined babassu oil, lauric acid, ethanol, and water at 303.2 K with different water mass fractions in the alcoholic solvent (0, 0.0557, 0.1045, 0.2029, and 0.2972). The dilution of solvent with water reduced the distribution coefficient values, which indicates a reduction in the loss of neutral oil. The experimental data were used to adjust the NRTL equation parameters. The global deviation between the observed and the estimated compositions was 0.0085, indicating that the model can accurately predict the behavior of the compounds at different levels of solvent hydration.  相似文献   

17.
Liquid–liquid equilibrium measurements for four binary N,N-dimethylformamide + hydrocarbon (hexane, heptane, octane, and cyclohexane) systems were performed using a laser scattering technique. The experimentally determined cloud points were satisfactorily correlated with two local composition models (NRTL, and Tsuboka–Katayama's modification of the Wilson equation). In addition, the prediction of LLE by means of the modified UNIFAC (Dortmund) model was also tested.  相似文献   

18.
Isothermal vapor–liquid equilibrium (VLE) and excess enthalpy (HE) data were measured for binary systems required for the design of reactive distillation processes for the methyl acetate production. The isothermal Px data were measured with the help of a computer-operated static apparatus. A commercial isothermal flow calorimeter was used for the determination of the heats of mixing. Temperature-dependent interaction parameters for the UNIQUAC model were fitted simultaneously to the experimental data from this work and other authors.  相似文献   

19.
Isobaric vapor–liquid equilibrium data have been measured for the ternary system acetone + 2,2′-oxybis[propane] + cyclohexane, and its constituent binaries at 94 kPa and in the temperature range 324–350 K in a vapor–liquid equilibrium still with circulation of both phases. The dependence of the interfacial tensions of these mixtures on concentration was also determined at atmospheric pressure and 303.15 K, using the maximum bubble pressure technique.From the experimental results, it follows that both the ternary and binary mixtures exhibit positive deviations from ideal behavior and, additionally, azeotropy is present for the binaries that contain acetone. The application of a model-free approach allows conclusions about the reliability of the present vapor–liquid equilibrium data for all the indicated mixtures. Furthermore, the determined interfacial tensions exhibit negative deviation from linear behavior for all the analyzed mixtures, and aneotropy is observed for the acetone + cyclohexane mixture.The vapor–liquid equilibrium data of the binary mixtures were well correlated using the NRTL, Wilson and UNIQUAC equations. In a similar manner, the interfacial tensions of the binary mixtures were smoothed using the Redlich–Kister equation. Scaling of these models to the ternary mixture allows concluding that both the vapor–liquid equilibrium data and the interfacial tensions can be reasonably predicted from binary contributions.  相似文献   

20.
Water activity measurements have been carried out on the aqueous solutions of both tri-potassium citrate (K3Cit) and polypropylene oxide (PPO) 400 + K3Cit over a range of temperatures at atmospheric pressure. The data obtained is used to calculate the vapor pressure as a function of temperature and concentration. The effect of temperature on the constant water activity lines of aqueous PPO + K3Cit systems has been studied and it was found that, at higher temperatures the higher concentration of polymer is in equilibrium with a certain concentration of the salt. Also it was found that the vapor pressure depression for an aqueous PPO + K3Cit system is more than the sum of those for the corresponding binary solutions. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. The agreement between the correlation and the experimental data is good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号