首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The mixture {yNH4Cl + (1 − y)MgCl2} (aq) has been studied using the hygrometric method at the temperature 298.15 K. The water activities are measured at total molalities from 0.30 mol kg−1 up to saturation for different ionic strength fractions y of NH4Cl with y = 0.20, 0.50 and 0.80. The obtained data allow the deduction of osmotic coefficients. Experimental results are compared with the calculations using the models of Zdanovskii–Stokes–Robinson, Kusik and Meissner, Robinson and Stokes, Lietzke and Stoughton, Reilly–Wood and Robinson and Pitzer. Thermodynamic properties have been modeled using the Pitzer ion-interaction model with inclusion of an ionic strength dependence of the third virial coefficient for the binary systems. From these measurements and the obtained binary parameters β(0), β(1), C(0) and C(1), the mixing ionic parameters θNH4MgθNH4Mg and ψNH4MgClψNH4MgCl are determined by the standard Pitzer model. The results show that a good accuracy is obtained with the standard Pitzer model using extended binary parameters. The parameters θNH4MgθNH4Mg and ψNH4MgClψNH4MgCl were used for evaluation of activity coefficients in the mixture. The excess Gibbs energy is also determined.  相似文献   

2.
Thermodynamic properties of quaternary aqueous solutions of mixed chlorides of 1-1*1-1*2-1 charge type with the cations (Na+, NH4 +; Mg2+, Ca2+, Ba2+) were determined using the hygrometric method. The quaternary systems NH4Cl + NaCl + MgCl2 + H2O, NH4Cl + NaCl + CaCl2+ H2O, and NH4Cl + NaCl + BaCl2 + H2O have been studied at 25 °C. The water activities were measured at total molalities from 0.44 mol⋅kg−1 to saturation for different ionic-strength fractions y of NH4Cl, y=(0.20,0.50,0.80), and different ionic strength ratios z for other solutes, z=(0.20,0.50 and 0.80) for each value of y. The obtained data allows the calculation of osmotic coefficients.  相似文献   

3.
Experimental vapor–liquid equilibria (VLE) for the CO2 + n-nonane and CO2 + n-undecane systems were obtained by using a 100-cm3 high-pressure titanium cell up to 20 MPa at four temperatures (315, 344, 373, and 418 K). The apparatus is based on the static-analytic method; which allows fast determination of the coexistence curve. For the CO2 + n-nonane system, good agreement was found between the experimental data and those reported in literature. No literature data were available for the CO2 + n-undecane system at high temperature and pressure. Experimental data were correlated with the Peng–Robinson equation of state using the classical and the Wong–Sandler mixing rules.  相似文献   

4.
A comprehensive thermodynamic model based on the electrolyte NRTL (eNRTL) activity coefficient equation is developed for the NaCl + H2O binary, the Na2SO4 + H2O binary and the NaCl + Na2SO4 + H2O ternary. The NRTL binary parameters for pairs H2O-(Na+, Cl) and H2O-(Na+, SO42−), and the aqueous phase infinite dilution heat capacity parameters for ions Cl and SO42− are regressed from fitting experimental data on mean ionic activity coefficient, heat capacity, liquid enthalpy and dissolution enthalpy for the NaCl + H2O binary and the Na2SO4 + H2O binary with electrolyte concentrations up to saturation and temperature up to 473.15 K. The Gibbs energy of formation, enthalpy of formation and heat capacity parameters for solids NaCl(s), NaCl·2H2O(s), Na2SO4(s) and Na2SO4·10H2O(s) are obtained by fitting experimental data on solubilities of NaCl and Na2SO4 in water. The NRTL binary parameters for the (Na+, Cl)-(Na+, SO42−) pair are regressed from fitting experimental data on dissolution enthalpies and solubilities for the NaCl + Na2SO4 + H2O ternary.  相似文献   

5.
The activity coefficients of sodium chloride in the NaCl + NaBF4 + H2O ternary system were experimentally determined at 298.15 K, at ionic strengths of 0.3. 0.5, 1, 2 and 3 mol kg−1 from emf from the bi-ISE cell without liquid junction:
ISE-Na|NaCl(mA), NaBF4(mB)|ISE-Cl
  相似文献   

6.
The kinetics of the radical reactions of CH3 with HCl or DCl and CD3 with HCl or DCl have been investigated in a temperature controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3 (or CD3) radical, R, was produced homogeneously in the reactor by a pulsed 193 nm exciplex laser photolysis of CH3COCH3 (or CD3COCD3). The decay of CH3/CD3 was monitored as a function of HCl/DCl concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature, typically from 188 to 500 K. The rate constants of the CH3 and CD3 reactions with HCl had strong non-Arrhenius behavior at low temperatures. The rate constants were fitted to a modified Arrhenius expression k = QA exp (−Ea/RT) (error limits stated are 1σ + Students t values, units in cm3 molecule−1 s−1): k(CH3 + HCl) = [1.004 + 85.64 exp (−0.02438 × T/K)] × (3.3 ± 1.3) × 10−13 exp [−(4.8 ± 0.6) kJ mol−1/RT] and k(CD3 + HCl) = [1.002 + 73.31 exp (−0.02505 × T/K)] × (2.7 ± 1.2) × 10−13 exp [−(3.5 ± 0.5) kJ mol−1/RT]. The radical reactions with DCl were studied separately over a wide ranges of temperatures and in these temperature ranges the rate constants determined were fitted to a conventional Arrhenius expression k = A exp (−Ea/RT) (error limits stated are 1σ + Students t values, units in cm3 molecule−1 s−1): k(CH3 + DCl) = (2.4 ± 1.6) × 10−13 exp [−(7.8 ± 1.4) kJ mol−1/RT] and k(CD3 + DCl) = (1.2 ± 0.4) × 10−13 exp [−(5.2 ± 0.2) kJ mol−1/RT] cm3 molecule−1 s−1.  相似文献   

7.
This work paper presents vapour–liquid equilibrium (VLE) data for binary (CO2 + nicotine) and ternary (CO2 + nicotine + solanesol) mixtures, at 313.2 K and 6, 8 and 15 MPa. The (CO2 + nicotine) system exhibits three phases (L1L2V) in equilibrium at 8.37 MPa. It is estimated that this system most likely follows the type-III phase behaviour. In the ternary system, the presence of solanesol in the vapour phase was detected only at the pressure of 15 MPa. At this pressure, partition coefficients and separation factors for solanesol/nicotine were calculated for different initial nicotine/solanesol compositions and a strong influence of composition was found. The results were modelled using the Peng–Robinson equation of state (PR EOS) coupled with the Mathias–Klotz–Prausnitz (MKP) mixing rule (PR–MKP model). Good correlations of the binary data, particularly in the case of the (CO2 + nicotine) mixture, were obtained. However, the model could not correlate the ternary data.  相似文献   

8.
Clemente Bretti 《Talanta》2007,72(3):1059-1065
Protonation constants of succinic, 1,2,3-propanetricarboxylic and 1,2,3,4-butanetetracarboxylic anions were determined in NaClaq + KClaq mixtures, at three ionic strengths, I = 1.2, 3 and 4.5 mol L−1. Experimental evidences showed that the function log KH = f(y) (y = [Na+]/([Na+] + [K+])) is not linear, indicating mixing effects on the protonation constants. The Guggenheim zeroth approximation holds that the above function can be written as:
  相似文献   

9.
10.
A complete, critical evaluation of all phase diagram and thermodynamic data was performed for all phases of the (Na2SO4 + K2SO4 + Na2S2O7 + K2S2O7) system and optimized model parameters were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range ordering, where the cations (Na+ and K+) are assumed to mix on a cationic sublattice, while anions were assumed to mix on an anionic sublattice. The Compound Energy Formalism was used for modelling the solid solutions of (Na,K)2SO4 and (Na,K)2S2O7. The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature were reproduced within experimental error limits.  相似文献   

11.
The kinetics and mechanism of the hydroboration reactions of 1-octene with HBBr2 · SMe2 and HBCl2 · SMe2, in CH2Cl2 as a solvent, were studied. Rates of hydroboration were monitored using 11B NMR spectroscopy. The reactions exhibited simple second-order kinetics of the form . The HBCl2 · SMe2 was found to be 20 times more reactive than the HBBr2 · SMe2. The overall activation parameters (ΔH, ΔS) for the reaction of HBBr2 · SMe2 with 1-octene were found to be 82 ± 1 kJ mol−1, −18 ± 4 J K−1 mol−1 and with 1-hexyne were 78 ± 4 kJ mol−1 −34 ± 12 J K−1 mol−1. For the reaction of HBCl2 · SMe2 with 1-octene, ΔH and ΔS were 104 ± 5 kJ mol−1 and 43 ± 16 J K−1 mol−1, respectively. The activation parameters (ΔH, ΔS) for the dissociation of Me2S from HBBr2 · SMe2 were found to be 104 ± 2 kJ mol−1, +33 ± 8 J K−1 mol−1, respectively. Based on the activation parameters, it was concluded that the detaching of Me2S from the boron centre follows a dissociative mechanism, while the hydroboration process follows an associative pathway. It was also concluded that the dissociation of Me2S from the boron centre is the rate determining step.  相似文献   

12.
An apparatus based on the static-analytic method was used to measure the vapor–liquid equilibria (VLE) for CO2 + alkanol systems. Equilibrium measurements for the CO2 + 1-propanol system were performed from 344 to 426 K. For the case of the CO2 + 2-propanol system, measurements were made from 334 to 443 K, and for the CO2 + 1-butanol were obtained from 354 to 430 K. VLE data were correlated with the Peng–Robinson equation of state using the classical and the Wong–Sandler mixing rules. Moreover, compressed liquid densities for the n-dodecane and n-tridecane were obtained via a vibrating tube densitometer at temperatures from 313 to 363 K and pressures up to 25 MPa. The Starling and Han (BWRS), and The five-parameter Modified Toscani-Swarcz (MTS) equations were used to correlate them. The experimental density data were compared with those from literature, and with the calculated values obtained from available equations for these n-alkanes.  相似文献   

13.
H2O + Ni(NO3)2 binary system were investigated in the temperature range from −25 °C to 55 °C. The solid-liquid equilibria of the ternary system H2O + Fe(NO3)3 + Ni(NO3)2 were studied using a synthetic method based on conductivity measurements. Tow isotherms were established at 0 °C and 30 °C, and the appearing stable solid phases are iron nitrate nonahydrate (Fe(NO3)3·9H2O), iron nitrate hexahydrate (Fe(NO3)3·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and nickel nitrate tetrahydrate (Ni(NO3)2·4H2O).  相似文献   

14.
Vapour-liquid equilibrium of CO2 + [0.00871 glycerol + 0.99129 (ethanol or 1-propanol or 1-butanol)] mixtures was measured at the temperatures of 313.15 K and 333.15 K, and close to the critical line, at pressures up to 12 MPa. On the liquid side, the bubble points measured for these ternary mixtures follow closely the behaviour of VLE reported by several authors for the corresponding binary mixtures without glycerol. On the vapour side, however, dew points for the ternary mixtures deviate significantly from VLE results for the binaries. A correlation of the results obtained for the CO2 + glycerol + ethanol mixture with the Peng-Robinson equation of state, admitting quasi-binary behaviour, equally yields good agreement on the liquid side, and significant deviations on the vapour side.  相似文献   

15.
The solubilities and complex phase equilibria for the system of MnSO4·4H2O + MgSO4·7H2O + H2O + CH3OH were determined at the temperatures 291.2 and 301.2 K over the methanol mole fraction range of 0.00–0.12.The solubility data were used for modelling with the modified extended electrolyte non-random two-liquid equation. The salting-out effect of MgSO4 and methanol on the solubilities of two manganese salts (MnSO4·H2O and MnSO4·4H2O) are represented in the several thermodynamic figures as a function of temperature. The solventing-out effect was stronger than the salting-out effect, which results in a decrease of the solubilities of manganese, salts even though the solubility of MnSO4·H2O decreased and solubility of MgSO4·4H2O increased as temperature increased.  相似文献   

16.
The phase behavior of carbon dioxide (CO2) and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) was measured and correlated at high pressures up to ∼40 MPa and at temperatures between 353.15 K and 373.15 K. The solubility data of CO2 in [bmim][Cl] were obtained by observing the bubble point pressure at specific temperatures. A variable-volume view cell, which is a high-pressure equilibrium apparatus, was used to measure the CO2 + [bmim][Cl] system solubility under varying pressure and temperature conditions. In addition, liquid–liquid–vapor (LLV) three-phase behavior was investigated using the equilibrium cell to be able to determine the classification of phase-behavior type by Scott and Van Konynenburg. Based on the LLV phase behavior, this system most likely has type III phase-behavior which is common for IL + CO2 systems. The resulting data showed that CO2 dissolved well in the IL at low CO2 concentrations, but that the pressure derivative of CO2 solubility dramatically decreased as the mole fraction of CO2 was increased. The experimental data were well fitted by the Peng–Robinson equation of state with a quadratic mixing rule and cubic parameters estimated by the Joback method.  相似文献   

17.
The equilibrium pressure of ternary mixtures of {x1CH3F + x2HCl + x3N2O} covering the entire composition range has been measured at temperature of 182.33 K by the static method. The system exhibits a minimum pressure for the binary {x1CH3F + x2HCl}. The molar excess Gibbs free energy has been calculated from the experimental equilibrium pressure. For the equimolar mixture . The (pxy) surface for the ternary system and the corresponding curves for the three constituent binary mixtures obtained from the Peng-Robinson equation of state are in agreement with the experimental data.  相似文献   

18.
In the present communication, we report the studies concerning liquid–liquid–solid equilibria for the ternary system sodium thiosulphate (Na2S2O3) + ethanol + water at ambient pressure and at room temperature (303 ± 2 K). The solubility data of Na2S2O3 are reported for solutions in water, ethanol and solutions of varying concentrations of ethanol in water. The phase diagram for the said system is developed, described and compared with similar system K2CO3 + methanol + water. These results have been explained in terms of structural properties of aqueous ethanol solutions and further discussed in terms of the effect of ions to cause phase separation.  相似文献   

19.
Microcalorimetric measurements of excess enthalpies at the temperature T = 298.15 K are reported for the binary mixture, (x1C6H12 + x2C4H8O) and the two ternary mixtures {x1C6H12 + x2(C4H8O or C5H10O) + x3(C5H12O)}. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is shown that good estimates of the ternary enthalpies can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.  相似文献   

20.
The reaction between ClCH2-R-CH2Cl, R = p-C6H4, and [Ph3Sn]Li+ yields Ph3Sn-CH2-R-CH2-SnPh3 (1) in high yield. The related known compound R = CH2CH2 (1a) is synthesized by the reaction of the di-Grignard reagent BrMg(CH2)4MgBr with two equivalents of Ph3SnCl. Cleavage of a single Sn-Ph group at each tin centre of both compounds using HCl/Et2O yields the corresponding bis-chlorostannanes Ph2ClSn-CH2-R-CH2-SnClPh2, R = (CH2)4 (2) and R = C6H4 (3), respectively. Compounds 1, 2 and 3 are crystalline solid materials and their single crystal X-ray structures are reported. In the solid state both 2 and 3 form self-assembled ladder structures involving alternating intermolecular Cl-Sn?Cl and Cl?Sn-Cl bonded chains at both ends of the distannanes with 5-coordinate tin atoms. Recrystallization of 3 from CH2Cl2 in the presence of DMF yields the bis-DMF adduct (4) in which no self-assembled structures were noted. Evaluation of the chlorostannanes 2 and 3 against a suite of bacteria, Staphylococcus aureus, Escherichia coli and Photobacterium phosphoreum is reported and compared to the related mono-chlorostannanes Ph2(CH3)SnCl and Ph2(PhCH2)SnCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号