首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The osmotic coefficients of binary methanol and ethanol solutions of 1-dodecanol and 1-tetradecanol wer measured at 25°C up to 8 mol-kg–1 in methanol and 5.5 mol-kg–1 in ethanol. The activity coefficients of the solute were calculated from Bjerrum's relation. From the osmotic and activity coeficients the excess Gibbs energies of solution as well as the respective partial molar functions of solute and solvent and the virial pair interaction coefficients for the excess Gibbs energies were calculated. In addition, the difference in the Gibbs energy of solvation for the solvent in solution relative to the pure solvent was calculated, as well as the partial molar volumes and excess partial molar volumes of solutes at infinite dilution, and the coefficients of pairwise contributions to the excess volume were determined. The thermodynamic parameters obtained are discussed on the basis of solute-solvent and solute-solute interactions.  相似文献   

2.
We propose a method for calculating the Gibbs energies of hydrogen bonding of solutes with associated solvents via the thermodynamic analysis of experimental values of solvation Gibbs energies. The method is applied to solutions of different proton acceptors in methanol. It is shown that the contribution of hydrogen bonding processes to the solvation Gibbs energy in methanol is in most cases very different in magnitude from the formation Gibbs energy of equimolar complexes of the solute and methanol. We demonstrate the need to include the contributions from solvophobic effects in investigating intermolecular interactions in associated solvents by means of thermodynamic data.  相似文献   

3.
The Gibbs energy of aggregation, a new integral thermodynamic characteristic of the self-organization of equilibrium liquid systems due to specific interactions such as hydrogen bonds, is introduced. This function is defined as the difference between the Gibbs energy of the associated liquid system and the Gibbs energy of the hypothetical nonideal liquid system consisting of monomers at the same temperature and pressure. General expressions for molar Gibbs energies of aggregation of a pure liquid and a binary solution, taking into account the contributions from specific and universal (dipole, dispersion) interactions, are derived in the context of the quasi-chemical approach. An expression for the dependence of the Gibbs energy of aggregation of a pure liquid on the degree of chain aggregation is derived using the athermal associated solution model. In the same approximation, an expression for the dependence of the Gibbs energy of aggregation for a binary solution of an associating component in an inert solvent on the solution’s composition and the degree of the chain association of a pure liquid is derived. Results from numerical calculations of the Gibbs energies of aggregation of a pure liquid and a binary solution are reported. A correlation is made between the Gibbs energy of aggregation of a pure liquid and the standard Gibbs energy of formation of the dimer. It is shown that the Gibbs energy of aggregation versus the standard Gibbs energy of dimerization dependence is nonlinear in the range of low degrees of aggregation.  相似文献   

4.
A theorem presented by Professor Ben-Naim (J Phys Chem 82:874–885, 1978) states that the standard state enthalpy and entropy changes arising from changes in the solvent structure that are induced by solvation of a solute cancel exactly in the standard state Gibbs energy. In this paper this is explored by consideration of the thermodynamics of transfer of electrolytes in mixed solvents, using previously developed models of the solvation process. Two cases are considered. One is random solvation, where curvatures in plots of the transfer enthalpies and entropies, which arise from changes in solvent–solvent interactions, exactly compensate in the transfer Gibbs (free) energies, which are sensibly linear with solvent composition. The second type of system are those with strong preferential solvation where it is found that the transfer Gibbs energies can be accounted for quantitatively in terms of changes in the solute–solvent interactions, with no contribution from changes in solvent–solvent interactions. The results are entirely consistent with the Ben-Naim theorem.  相似文献   

5.
The standard Gibbs free energies of transfer from pyridine to pyridine+diluent mixtures are reported for the ZnCl2py2 complex at 25°C. Their variations with varying mixed solvent composition agree with those expected for regular solutions when the diluents are polar and basic while marked deviations are observed for non-polar, inert diluents. For protic diluents the free energies of transfer of ZnCl2py2 exhibit maxima, indicating specific interaction of the complex with both solvent components in these systems. The free energies of transfer of ZnCl2py2 to the pure diluents plotted vs. the solubility parameter of the latter reveal separate Hildebrand correlations for inert and for basic solvents, with the free energies of transfer of the complex to the protic solvents deviating from both. Weak specific interactions of ZnCl2py2 with the basic solvents and stronger interactions with the protic solvents are inferred and further examined in the light of the free energy of transfer data for the related tetrahedral complexes ZnBr2py2, ZnCl2(α-pic)2, CoCl2(α-pic)2, and ZnBr2(α-pic)2.1H-NMR spectrum of the pyridine ligands of ZnCl2py2 confirm their involvement in weak hydrogen-bond formation with the basic solvents, while the downfield shift observed for the solvent chloroform is consistent with hydrogen bond formation of the latter with the chloro-ligands.  相似文献   

6.
The absorption spectra of nine compounds structurally related to phenytoin (5,5-diphenylhydantoin) were recorded in twelve solvents over the range of 200 to 400 nm. The effects of solvent dipolarity/polarizability and solvent/solute hydrogen bonding interactions were analyzed by means of the linear solvation energy relationship (LSER) concept proposed by Kamlet and Taft. The lipophilic activity of the investigated hydantoins was estimated by calculation of their log 10 P values. The calculated values of log 10 P were correlated with the ratio of the contributions of specific and non-specific solute/solvent interactions. The correlation equations were combined with the corresponding ED50 values to generate new equations that demonstrate exact relationship between solute/solvent interactions and the structure-activity parameters.  相似文献   

7.
The solubilities of DL-α-aminobutyric acid in KCl solutions of different concentrations are measured at 288.15–308.15 K. Gibbs energies and entropies have been determined for transfer of α-aminobutyric acid form water to aqueous KCl solution at 298.15 K. The cavity, dipole-dipole and other interactions affecting the solubility, as well as stability of the amino acid in solution are also evaluated. Gibbs energy and entropy of transfer due to interactions are computed to create the model of the complex solute-solvent and solventsolvent interactions. Molar volume, densities, dipole moment of solvent and diameter of co-solvent in aqueous potassium chloride are also evaluated.  相似文献   

8.
The thermodynamic characteristics of hydrophobic hydration, the Gibbs energies of hydrophobic effect, were calculated. The method for calculations was based on the division of the Gibbs energy of hydration into contributions of nonspecific interactions, specific interactions between solutes and solvents (if they exist), and hydrophobic effect. In the absence of specific interactions between solutes and water, the Gibbs energy of hydrophobic effect depended linearly on the characteristic molecular volume of the solute for substances with different structures and properties. The universality of this dependence allows the suggestion to be made that it remains valid also in the presence of specific interactions. This allows the Gibbs energy of specific interactions in water to be determined for a wide range of compounds, in particular, for aliphatic alcohols.  相似文献   

9.
Molecular dynamics simulations of aqueous solutions of the solutes acetamide (AcNH2), acetic acid (AcOH), and acetaldehyde (AcH) were made using Lennard–Jones 12-6-1 potentials to describe the solute–solvent interactions. The Morokuma decomposition scheme and the ESIE solute atomic charges were used to reproduce the exchange, polarization, and electrostatic components of the solute–water interaction energy. A nonlinear perturbation was incorporated into the “slow-growth” technique in order to improve the results for the solvation Gibbs energy that were found to be in agreement with the available experimental and theoretical values.  相似文献   

10.
The enthalpies of solution and solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute–solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute–solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ · mol−1. The values of group contributions and corrections are strongly influenced by solvent properties.  相似文献   

11.
A new method was suggested for estimating the hydrophobic effect of contributions to the Gibbs energies and enthalpies of hydration of hydrocarbons, inorganic gases and rare gases. In accordance with this method the hydrophobic effect contribution to the Gibbs energy was evaluated from the difference between the hydration Gibbs energy of a solute and the non hydrophobic contribution. To estimate the latter value, the known dependence connecting the Gibbs energies of solvation of a solute in a number of aprotic solvents to the Hildebrand solubility parameter for these solvents was used. The non hydrophobic contribution to the Gibbs energy of hydration was calculated for various solutes from such dependences extended to water as solvent. The Hildebrand solubility parameter for water used in the calculation was corrected for the effect of association through hydrogen bonding. This correction was made by subtraction of the water self-association enthalpy from the enthalpy of vaporization of water. The evaluated Gibbs energies of the hydrophobic effect are positive for saturated hydrocarbons, inorganic gases and rare gases and linearly depend on the solute molecular refraction. The hydrophobic contribution to the hydration enthalpies of the solutes was calculated in the same manner as was made to calculate the hydrophobic contribution to Gibbs energies of hydration. Enthalpies of the hydrophobic effect for the solutes under study are negative.  相似文献   

12.
Molecular dynamics simulation of an aqueous solution of acetamide was performed using Lennard–Jones 12-6-1 potentials to describe the solute–solvent interactions, and TIP3P to describe the water–water interactions. The Morokuma decomposition scheme and the ESIE solute atomic charges were used to reproduce the molecular parameters of the solute–water interaction potential. The results showed that the functions that use the EX-PL-DIS-ES interaction model lead to good values of the structural and energy properties (in particular, the hydration shell and the solvation energies) when they are compared with those from using AMBER-derived parameters, and with the available theoretical and experimental data.  相似文献   

13.
Densities, viscosities and tracer diffusion coefficients for solutions of the nonionic surfactants Triton X-45, X-114, X-100 and X-102 in water (except for Triton X-45) and methanol, and for Triton X-100 in three water-methanol mixtures have been measured at 298.15 K and 308.15 K. The activation energy for viscous flow and the contributions to it from solute and solvent have been calculated. Comparison of the Gibbs energies of these systems shows the roles of polyoxyethylene chains of Triton X molecules in the interactions between solute and solvent, and also the effects of solvents on the inter-actions for different solutes. The viscosityB coefficients are positive for all of the surfactant solutions, and the temperature coefficients ofB are negative. In the non-micellar solutions in methanol, values ofB are small and the temperature coefficient ofB is nearly zero. In water-methanol mixtures the critical micelle concentration becomes larger as the methanol content increases up to 40% w/w; micelles are not formed at higher methanol concentrations. TheB coefficient decreases with increasing proportion of methanol in the solvent, and the temperature coefficient ofB changes from a fairly large positive value at low methanol contents to a small negative value at 80% w/w methanol.  相似文献   

14.
15.
The viscosities of aqueous solutions of lithium, sodium, potassium, rubidium and caesium cyclohexylsulfamates were measured at 293.15, 298.15, 303.15, 313.15 and 323.15 K. The relative viscosity data were analyzed and interpreted in terms of the Kaminsky equation, η r=1+Ac 1/2+Bc+Dc 2. The viscosity A-coefficient was calculated from the Falkenhagen-Dole theory. The viscosity B-coefficients are positive and relatively large. Their temperature coefficient B/ T is negative or near zero for lithium and sodium salts whereas for potassium, rubidium and caesium salts it is positive. The viscosity D-coefficient is positive. This was explained by the size of the ions, structural solute–solute interactions, hydrodynamic effect, and by higher terms of the long-range Debye-Hückel type of forces. From the viscosity B-coefficients the thermodynamic functions of activation of viscous flow were calculated. The limiting partial molar Gibbs energy of activation of viscous flow of the solute was divided into contributions due to solvent molecules and the solute in the transition state. The activation energy of the solvent molecules was calculated using the limiting Gibbs energy of activation for the conductance of the solute ions. The activation energy of the solvent molecules was then discussed in terms of the nature of the alkali-metal ions and their influence on the structure of water. The limiting activation entropy and enthalpy of the solute for activation of viscous flow were interpreted by ion-solvent bond formation or breaking in the transition state of the solvent. The hydration numbers of the investigated electrolytes were calculated from the specific viscosity of the solutions.  相似文献   

16.
A general method for estimating the specific solute—solvent interaction energies (Es) from analysis of solvent effects on electronic absorption spectra has been outlined. The Es values for a number of mono- and disubstituted benzenes in a variety of solvents such as water, alcohols, chloroalkanes, ether and acetonitrile have been estimated and the results are discussed in relation to the interacting groups in the solute and solvent molecules. These interactions, which can be classified as H bonding or EDA type, are mainly electrostatic in nature. These studies indicate that, in the case of disubstituted benzenes, the intramolecular electronic interactions are stronger than the solute—solvent interactions.  相似文献   

17.
The COSMO cluster-continuum (CCC) solvation model is introduced for the calculation of standard Gibbs solvation energies of protons. The solvation sphere of the proton is divided into an inner proton-solvent cluster with covalent interactions and an outer solvation sphere that interacts electrostatically with the cluster. Thus, the solvation of the proton is divided into two steps that are calculated separately: 1) The interaction of the proton with one or more solvent molecules is calculated in the gas phase with high-level quantum-chemical methods (modified G3 method). 2) The Gibbs solvation energy of the proton-solvent cluster is calculated by using the conductor-like screening model (COSMO). For every solvent, the solvation of the proton in at least two (and up to 11) proton-solvent clusters was calculated. The resulting Gibbs solvation energies of the proton were weighted by using Boltzmann statistics. The model was evaluated for the calculation of Gibbs solvation energies by using experimental data of water, MeCN, and DMSO as a reference. Allowing structural relaxation of the proton-solvent clusters and the use of structurally relaxed Gibbs solvation energies improved the accordance with experimental data especially for larger clusters. This variation is denoted as the relaxed COSMO cluster-continuum (rCCC) model, for which we estimate a 1σ error bar of 10 kJ mol(-1) . Gibbs solvation energies of protons in the following representative solvents were calculated: Water, acetonitrile, sulfur dioxide, dimethyl sulfoxide, benzene, diethyl ether, methylene chloride, 1,2-dichloroethane, sulfuric acid, fluorosulfonic acid, and hydrogen fluoride. The obtained values are absolute chemical standard potentials of the proton (pH=0 in this solvent). They are used to anchor the individual solvent specific acidity (pH) scales to our recently introduced absolute acidity scale.  相似文献   

18.
The physical interactions of polymers with neighboring molecules are determined by only two kinds of interactions: London dispersion forces and Lewis acid–base interactions. These two kinds of attractive energies (together with certain steric restrictions) determine solubility, solvent retention, plasticizer action, wettability, adsorption, adhesion, reinforcement, crystallinity, and mechanical properties. The London dispersion force interaction energies of polymers have been quantified by the dispersion force contribution to cohesive energy density (δ2d) and the dispersion force contribution to surface energy (δd). The Lewis acid–base interactions, often referred to as “polar” interactions, can be best quantified by Drago's CA and EA constants for acid sites and CB and EB constants for basic sites. In this article infrared spectral shifts are featured as a method of determining enthalpies of acid–base interaction, and the C and E constants for polymers, plasticizers, and solvents. Examples are given where acid–base complexation of polymers with solvents dominate solubility and swelling phenomena. Enthalpies of acid–base complexation in polymer blends are determined from spectral shifts.  相似文献   

19.
A combined method of the Dirac–Hartree–Fock (DHF) method and the reference interaction-site model (RISM) theory is reported; this is the initial implementation of the coupling of the four-component relativistic electronic structure theory and an integral equation theory of molecular liquids. In the method, the DHF and RISM equations are solved self-consistently, and therefore the electronic structure of the solute, including relativistic effects, and the solvation structure are determined simultaneously. The formulation is constructed based on the variational principle with respect to the Helmholtz energy, and analytic free energy gradients are also derived using the variational property. The method is applied to the iodine ion (I), methyl iodide (CH3I), and hydrogen chalcogenide (H2X, where X = O–Po) in aqueous solutions, and the electronic structures of the solutes, as well as the solvation free energies and their component analysis, solvent distributions, and solute–solvent interactions, are discussed.  相似文献   

20.
通过理论计算推测NH2-,NH3和NH4+在水溶液第一溶剂化层中与之直接作用的水分子分别为2,4和4个,并采用离散-连续模型计算了NH2-,NH3,NH3和NH4+在水溶液中的溶剂化自由能.结果表明,由于离散-连续模型在从头算水平考虑了溶质分子与第一溶剂化层溶剂分子之间的作用,能更准确地描述溶剂化作用.此外,采用更加符合溶液中真实情况的溶剂化构型,能得到更准确的溶剂化性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号