首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The viscosity of imidazolium-based ionic liquids (ILs) saturated with gaseous, liquid and supercritical carbon dioxide (CO2) was measured by a high-pressure viscometer at three different temperatures (25, 50, and 70 °C). The high-pressure viscosity of 1-ethyl-3-methylimidazolium ([EMIm]), 1-n-hexyl-3-methylimidazolium ([HMIm]), and 1-n-decyl-3-methylimidazolium ([DMIm]) cations with a common anion, bis(trifluoromethylsulfonyl)amide ([Tf2N]), saturated with CO2 was measured up to a maximum of 287 bar. As CO2 pressure is increased the viscosity of the IL mixture dramatically decreases. While, the ambient pressure viscosity of 1-alkyl-3-methyl-imidazolium [Tf2N] ILs increases significantly with increasing chain length, the viscosity of all the CO2-saturated ILs becomes very similar at high CO2 pressures. From previous vapor–liquid equilibrium data, the viscosity with concentration was determined and found to be the primary factor to describe the fractional viscosity reduction. Several predictive and correlative methods were investigated for the mixture viscosity given pure component properties and include arithmetic mixing rules, the Irving (Predictive Arrhenius) model, Grunberg equation, etc. The modified Grunberg model with one adjustable parameter provided an adequate fit to the data.  相似文献   

2.
Ionic liquids are environmentally friendly solvents composed of large organic cations and relatively small inorganic anions, whose melting point is below T = 373.15 K. This is an arbitrary limit defined in order to organize the dramatically increasing number of possible applications in chemical processes. These compounds are regarded as potentially environmentally benign solvents due to their almost negligible vapor pressure, which essentially eliminates emission to the atmosphere; besides, they present a wide range of liquid existence. Ionic liquids are applicable in separation processes, such as recovery of valuable products and remotion of polluting agents in effluents 1, 2, 3 and 4 and are a new and exciting class of compounds that have the potential to overcome many of the problems associated with current CO2-capture techniques. In this work, high-pressure vapor–liquid equilibrium (VLE) of 17 binary mixtures ionic liquid + gas has been modeled with the Peng–Robinson/Stryjek–Vera (PRSV) 5 and 6 equation of state (EoS) applying the Wong–Sandler (WS) [7] mixing rules, including the van Laar (VL) model for the excess Gibbs free energy [8] for the gamma–phi approach and the one-fluid van der Waals (VDW) mixing rules for the phi–phi approach. Critical properties and acentric factor of ionic liquids [pmim][Tf2N] and [hmmim][Tf2N] were determined using the extended group contribution method by Lydersen–Joback–Reid [9], while, for the other ionic liquids, these properties are available in the literature 10 and 11. Experimental data were obtained from literature 12, 13, 14, 15, 16, 17 and 18 and the adjustable parameters were fitted by minimizing the errors between predicted and experimental bubble pressure. van Laar and binary interaction parameters were regarded as temperature-dependent. The results, in terms of main deviations between experimental and calculated pressures for the 17 binary systems, are reasonably satisfactory (3.62% and 2.59% for the gamma–phi and phi–phi approaches, respectively).  相似文献   

3.
Phase equilibrium data have been measured for the ternary system hyperbranched polyglycerol + methanol + carbon dioxide at temperatures of 313–450 K and pressures up to 13.5 MPa. Phase changes were determined according to a synthetic method using the Cailletet setup. At elevated temperatures the system shows a liquid–liquid–vapor region with lower solution temperatures. Besides the vapor–liquid and liquid–liquid equilibria, the vapor–liquid to vapor–liquid–liquid and vapor–liquid–liquid to liquid–liquid phase boundaries are reported at different polymer molar masses and can serve as test sets for thermodynamic models. A distinct influence of the polymer molar mass on the vapor–liquid equilibrium can be noticed and indicates the existence of structural effects due to the polymer branching. Modeling the systems with the PCP-SAFT equation of state confirms these findings.  相似文献   

4.
The liquid–liquid equilibrium (LLE), or solid–liquid equilibrium (SLE) of more than 20 binary systems containing 1-hexyloxymethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)-imide [C6H13OCH2MIM][Tf2N] with alcohol (butan-1-ol, or hexan-1-ol, or octan-1-ol), water and ketone (3-pentanone, or cyclopentanone) and of 1-hexyloxymethyl-3-methyl-imidazolium tetrafluoroborate [C6H13OCH2MIM][BF4] with alcohol (methanol, or ethanol, or butan-1-ol, or hexan-1-ol, or octan-1-ol), water and ketone (3-pentanone, or cyclopentanone) have been measured. The solubility of dialkoxy-imidazolium salts: (1) 1,3-dihexyloxymethyl-imidazolium bis(trifluoromethylsulfonyl)-imide [(C6H13OCH2)2IM][Tf2N] in alcohol (butan-1-ol, or hexan-1-ol, or octan-1-ol, or decan-1-ol), in water and hydrocarbon (benzene, hexane and cyclohexane); (2) 1,3-dihexyloxymethyl-imidazolium tetrafluoroborate [(C6H13OCH2)2IM][BF4] in alcohol (hexan-1-ol, or octan-1-ol, or decan-1-ol) and water have been measured. Measurements were carried out by using a dynamic method from T = 275 K to the boiling point of the solvent. In this work a systematic study of the impact of different factors on the phase behaviour of hexyloxy-imidazolium-based ionic liquids with polar and nonpolar solvents has been presented. Most of the examined systems showed immiscibility in the liquid phase with an upper critical solution temperature (UCST), or complete solubility of the ionic liquid at room temperature in many solvents. An increase in the alkyl chain length of alcohol resulted in an increase in the UCST. The choice of anion was shown to have large impact on the solubility: by changing the anion [Tf2N] to [BF4], the solubility dramatically decreased and the UCST increased. By contrast, increasing hydrogen bonding opportunities with the solvent by replacing a methyl group with the second alkoxy-group on the imidazolium ring results in an increase of the solubility.  相似文献   

5.
Vapor pressure data were measured for water, methanol and ethanol as well as their binary mixtures with an ionic liquid (IL) 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]) at varying temperature and IL-content ranging from mass fraction of 0.10–0.70 by a quasi-static method. The vapor pressure data for the IL-containing binary systems were correlated using NRTL equation with average absolute relative deviation (ARD) within 0.0076, and the binary NRTL parameters was used for predicting the vapor pressure of the IL-containing ternary systems with reasonable accuracy. In addition, the infinite activity coefficients of solvents in [EMIM][DMP] and isobaric vapor–liquid equilibrium for IL-containing ternary systems at 101.325 kPa and mass fraction of IL being 0.5 were predicted with the regressed NRTL parameters. The results indicate that ionic liquid [EMIM][DMP] can depress the volatility of the solvents of water, methanol and ethanol but to a varying degree, leading to the variation of relative volatility of a solvent and even removal of azeotrope for water–ethanol mixture.  相似文献   

6.
Several imidazolium-based ionic liquids (ILs) with varying cation alkyl chain length (C4–C10) and anion type (tetrafluoroborate ([BF4]), hexafluorophosphate ([PF6]) and bis(trifluoromethylsulfonyl)imide ([Tf2N])) were used as reaction media in the microwave polymerization of methacrylate-based stationary phases. Scanning electron micrographs and backpressures of poly(butyl methacrylate-ethylene dimethacrylate) (poly(BMA-EDMA)) monoliths synthesized in the presence of these ionic liquids demonstrated that porosity and permeability decreased when cation alkyl chain length and anion hydrophobicity were increased. Performance of these monoliths was assessed for their ability to separate parabens by capillary electrochromatography (CEC). Intra-batch precision (n = 3 columns) for retention time and peak area ranged was 0.80–1.13% and 3.71–4.58%, respectively. In addition, a good repeatability of RSDRetention time = <0.30% and ∼1.0%, RSDPeak area = <1.30% and <4.3%, and RSDEfficiency = <0.6% and <11.5% for intra-day and inter-day, respectively exemplify monolith performance reliability for poly(BMA-EDMA) fabricated using 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4]) porogen. This monolith was also tested for its potential in nanoLC to separate protein digests in gradient mode. ILs as porogens also fabricated different alkyl methacrylate (AMA) (C4–C18) monoliths. Furthermore, employing binary IL porogen mixture such as 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]) successfully decreased the denseness of the monolith, than when using [C4mim][Tf2N] IL alone, enabling a chromatographic run to be performed with 1:1 ratio produced baseline separation for the analytes. The combination of ILs and microwave irradiation made polymer synthesis very fast (∼10 min), entirely green (organic solvent-free) and energy saving process.  相似文献   

7.
Vapor–liquid equilibria and saturated density for carbon dioxide + tetrahydrofuran mixtures at high pressures were measured by the analytical method at the temperatures 298.15 and 313.15 K. The experimental apparatus equipped with three Anton Paar DMA 512S vibrating tube density meters was previously developed for measuring vapor–liquid–liquid equilibrium at high pressures. The equilibrium composition and saturated density of each phase were determined by gas chromatograph and vibrating tube density meters, respectively. The bubble point pressure at the temperature 313.15 K was further measured by the synthetic method. The experimental data were correlated with Soave–Redlich–Kwong (SRK) equation of state and the pseudocubic equation of state.  相似文献   

8.
Ionic liquids (ILs) and carbon dioxide (CO2) systems have unique phase behavior that has been applied to applications in reactions, extractions, materials, etc. Detailed phase equilibria and modeling are highly desired for their further development. In this work, the (vapor + liquid) equilibrium, (vapor + liquid + liquid) equilibrium, and (liquid + liquid) equilibrium of n-alkyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids with CO2 were measured at temperatures of (298.15, 323.15, 343.15) K and pressure up to 25 MPa. With a constant anion of bis(trifluoromethylsulfonyl)amide, the n-alkyl chain length on the cation was varied from 1-ethyl-3-methyl-imidazolium ([EMIm][Tf2N]), 1-hexyl-3-methyl-imidazolium ([HMIm][Tf2N]), to 1-decyl-3-methyl-imidazolium ([DMIm][Tf2N]). The effects of the cation on the phase behavior and CO2 solubility were investigated. The longer alkyl chain lengths increase the CO2 solubility. The Peng–Robinson equation of state with van der Waals 2-parameter mixing rule with estimated IL critical properties were used to model and correlate the experimental data. The models correlate the (vapor + liquid) equilibrium and (liquid + liquid) equilibrium very well. However, extrapolation of the model to much higher pressures (>30 MPa) can results in the prediction of a mixture critical point which, as of yet, has not been found in the literature.  相似文献   

9.
The liquid–liquid equilibrium (LLE) of the ternary system comprising heptane, thiophene and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2mim][NTf2]) was determined at 25 °C and atmospheric pressure, for preliminary evaluation of the potential of this ionic liquid as solvent for the desulfurisation of transportation fuels. Classical parameters such as solute distribution ratio and selectivity were calculated from the LLE data and subsequently analysed. The LLE data were also correlated by means of the ‘Non-Random Two-Liquid’ (NRTL) equation. Besides the LLE, another critical property for the design of extraction processes, namely the interfacial tension, was determined in parallel, throughout the immiscibility domain of the ternary system. For the first time, the LLE and the interfacial tension of a ternary system involving an ionic liquid are jointly reported.  相似文献   

10.
Isobaric vapor–liquid and vapor–liquid–liquid equilibria were measured for the water–ethanol–hexane system at normal atmospheric pressure. The apparatus used for the determination of vapor–liquid–liquid equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer coupled to the boiling flask.  相似文献   

11.
An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer has been used to determine vapor–liquid (VLE) and vapor–liquid–liquid (VLLE) equilibria. Consistent data have been obtained for the ternary water + ethanol + p-xylene system at 101.3 kPa for temperatures in the range of 351.16–365.40 K. Experimental results have been used to check the accuracy of the UNIFAC, UNIQUAC and NRTL models in the liquid–liquid region of importance in the dehydration of ethanol by azeotropic distillation.  相似文献   

12.
A flow-type method was adopted to measure the vapor–liquid equilibria for methanol + methyl laurate and methanol + methyl myristate systems at 493–543 K, near the critical temperature of methanol (Tc = 512.64 K), and 2.16–8.49 MPa. The effect of temperature and fatty acid methyl esters to the phase behavior was discussed. The mole fractions of methanol in liquid phase are almost the same for both systems. In vapor phase, the mole fractions of methanol are very close to unity at all temperatures. The present vapor–liquid equilibrium data were correlated by PRASOG. A binary parameter was introduced to the combining rule of size parameter. The binary parameters of methanol + fatty acid methyl ester systems were determined by fitting the present experimental data. The correlated results are in good agreement with the experimental data. The vapor–liquid equilibria for methanol + methyl laurate + glycerol and methanol + methyl myristate + glycerol ternary systems were also predicted using the methanol + fatty acid methyl ester binary parameters. The mole fractions of methanol in vapor phase are around unity even if glycerol is included in the systems.  相似文献   

13.
In this work the vapor–liquid equilibria for nine binary mixtures (methanol + acetic acid, methanol + methyl acetate, methanol + water, methyl acetate + acetic acid, water + acetic acid, ethyl acetate + acetic acid, ethanol + acetic acid, ethanol + ethyl acetate and ethanol + water) at subatmospherical pressure (580 mmHg) is presented. Peng–Robinson Stryjek–Vera equation of state coupled with the Wong–Sandler mixing rules were used for predicting phase equilibria of these mixtures. The measurements were developed using an apparatus with recirculation that can also be employed for liquid–vapor equilibrium with chemical reaction.  相似文献   

14.
The solubilities of three dibasic carboxylic acids (adipic acid, glutaric acid, and succinic acid) in water, in the ionic liquid of 1-butyl-3-methyl-imidazolim tetrafluoroborate ([Bmim][BF4]), and in the aqueous [Bmim][BF4] solutions have been measured by a solid-disapperance method. The binodal curve of water + [Bmim][BF4] was also determined experimentally from solid–liquid–liquid coexistence temperature up to near the upper critical solution temperature. Experimental results showed that each acid-containing binary behaved as a simple eutectic system. The solid–liquid equilibrium (SLE) data were correlated with the NRTL model for each binary system. The NRTL model with these determined binary parameters predicted the solid-disappearance temperatures of the aqueous ternary mixtures containing [Bmim][BF4] and the dibasic acids to within an average absolute deviation of 2.0%.  相似文献   

15.
Experimental vapor–liquid equilibria for the systems carbon dioxide + 1-butanol and carbon dioxide + 2-butanol were obtained from 313 to 363 K via a static-analytic set-up. A vibrating U-tube densitometer was coupled to this apparatus to perform simultaneous measurements of both saturated densities of the vapor and liquid phases. The suitability of this apparatus was checked by comparing the experimental vapor–liquid equilibrium and saturated density results with the literature data. The experimental vapor–liquid equilibrium data were correlated using the Peng–Robinson equation of state coupled to the Wong–Sandler mixing rules with good agreement; however densities using the same model were not satisfactorily represented.  相似文献   

16.
The aim of this study was to determine the capability and accuracy of Monte Carlo simulations to predict ternary vapor–liquid–liquid equilibrium (VLLE) for some industrial systems. Hence, Gibbs ensemble Monte Carlo simulations in the isobaric–isothermal (NpT) and isochoric–isothermal (NVT) ensembles were performed to determine vapor–liquid–liquid equilibrium state points for three ternary petrochemical mixtures: methane/n-heptane/water (1), n-butane/1-butene/water (2) and n-hexane/ethanol/water (3). Since mixture (1) exhibits a high degree of mutual insolubility amongst its components, and hence has a large three-phase composition region, simulations in the NpT ensemble were successful in yielding three distinct and stable phases at equilibrium. The results were in very good agreement with experimental data at 120 kPa, but minor deviations were observed at 2000 kPa. Obtaining three phases for mixture (2) with the NpT ensemble is very difficult since it has an extremely narrow three-phase region at equilibrium, and hence the NVT ensemble was used to simulate this mixture. The simulated results were, once again, in excellent agreement with experimental data. We succeeded in obtaining three-phase equilibrium in the NpT ensemble only after knowing, a priori, the correct three-phase pressure (corresponding to the force fields that were implemented) from NVT simulations. The success of the NVT simulation, compared to NpT, is due to the fact that the total volume can spontaneously partition itself favorably amongst the three boxes and only one intensive variable (T) is fixed, whereas the pressure and the temperature are fixed in an NpT simulation. NpT simulations yielded three distinct phases for mixture (3), but quantitative agreement with experimental data was obtained at very low ethanol concentrations only.  相似文献   

17.
The complex formed by the reaction of the uranyl ion, UO22+, with bromide ions in the ionic liquids 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Bmim][Tf2N]) and methyl-tributylammonium bis(trifluoromethylsulfonyl)imide ([MeBu3N][Tf2N]) has been investigated by UV–Vis and U LIII-edge EXAFS spectroscopy and compared to the crystal structure of [Bmim]2[UO2Br4]. The solid state reveals a classical tetragonal bipyramid geometry for [UO2Br4]2− with hydrogen bonds between the Bmim+ and the coordinated bromides. The UV–Vis spectroscopy reveals the quantitative formation of [UO2Br4]2− when a stoichiometric amount of bromide ions is added to UO2(CF3SO3)2 in both Tf2N-based ionic liquids. The absorption spectrum also suggests a D4h symmetry for [UO2Br4]2− in ionic liquids, as previously observed for the [UO2Cl4]2− congener. EXAFS analysis supports this conclusion and demonstrates that the [UO2Br4]2− coordination polyhedron is maintained in the ionic liquids without any coordinating solvent or water molecules. The mean U–O and U–Br distances in the solutions, determined by EXAFS, are, respectively, 1.766(2) and 2.821(2) Å in [Bmim][Tf2N], and, respectively, 1.768(2) and 2.827(2) Å, in [MeBu3N][Tf2N]. Similar results are obtained in both ionic liquids indicating no significant influence of the ionic liquid cation either on the complexation reaction or on the structure of the uranyl species.  相似文献   

18.
In this work, experimental data of isobaric vapour–liquid equilibria for the ternary system ethanol + water + 1-hexyl-3-methylimidazolium chloride ([C6mim][Cl]) and for the corresponding binary systems containing the ionic liquid (ethanol + [C6mim][Cl], water + [C6mim][Cl]) were carried out at 101.300 kPa. VLE experimental data of binary and ternary systems were correlated using the NRTL equation. In a previous work [N. Calvar, B. González, E. Gómez, A. Domínguez, J. Chem. Eng. Data 51 (2006) 2178–2181], the VLE of the ternary system ethanol + water + [C4mim][Cl] was determined and correlated, so we can study the influence of different ionic liquids in the behaviour of the azeotropic mixture ethanol–water.  相似文献   

19.
Densities, refractive indices and dynamic viscosities of binary and ternary mixtures composed of isopropyl acetate, isopropanol, 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C8mim][NTf2]) have been determined at 298.15 K and atmospheric pressure. The excess molar volumes and dynamic viscosity changes of mixing have been calculated and correlated using the Redlich–Kister polynomial equation. Isobaric vapour–liquid equilibrium (VLE) data have been determined experimentally for these binary and ternary systems at 101.32 kPa. The equilibrium data have been adequately correlated by means of Wilson, NRTL, and UNIQUAC equations for the liquid phase activity coefficient.  相似文献   

20.
An apparatus used to measure vapor pressure of organic solvents was set up, and vapor pressure of mixture of ionic liquids ([BMIM][PF6] and [BMIM][BF4]) and aromatic compounds (benzene and thiophene), with mole fraction of organic solute from 0.1 to 0.75 was measured by using saturation vapor pressure method at temperature from 303 K to 343 K. Then NRTL equation was used to correlate the experimental data. The overall average relative deviation of activity coefficients for the whole system is 2.30%, which indicates that NTRL equation can be utilized to correlate vapor pressure of binary systems containing ionic liquids. The results show that ionic liquids can depress the volatility of aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号