首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, the competing effects of sodium chloride (NaCl) and tetrahydrofuran (THF) on carbon dioxide hydrate formation are investigated through phase equilibrium measurements. The phase behaviour in the hydrate forming region for the binary system carbon dioxide–water, the ternary systems carbon dioxide–tetrahydrofuran–water and ternary carbon dioxide–sodium chloride–water and, in addition, the quaternary system carbon dioxide–tetrahydrofuran–water–sodium chloride are determined experimentally, using a Cailletet apparatus. All measurements are made in a temperature and pressure region of 275–290 K and 0.5–7.0 MPa, respectively. In these ranges, three different hydrate equilibrium curves are measured namely: H-LW-V, H-LW-LV-V and H-LW-LV. The formation of an organic-rich liquid phase in the systems due to a liquid–liquid two-phase split between water and tetrahydrofuran when pressurized with carbon dioxide causes the occurrence of an upper quadruple point (Q2) to evolve into a four-phase H-LW-LV-V equilibrium line. The presence of sodium chloride in the quaternary system enhances the split between the two liquids due to the salting-out effect. It was found that the hydrate promoting effect of tetrahydrofuran is able to suppress the inhibiting effect of sodium chloride especially at lower concentration of sodium chloride.  相似文献   

2.
In this communication, we report experimental dissociation conditions for region clathrate hydrates of methane + carbon dioxide in gas–liquid water–hydrate (G–Lw–H) equilibrium. The temperature and pressure conditions are in the range of (279.1–289.9) K and (2.96–13.06) MPa, respectively. Concentrations of carbon dioxide in the feed gas are also varied. An isochoric pressure-search method was used to perform the measurements. The dissociation data generated in this work along with the literature data are compared with the predictions of a thermodynamic model and a previously reported empirical equation. A discussion is made on the deviations between the experimental and predicted data.  相似文献   

3.
The isothermal phase equilibria of the carbon dioxide + cyclopropane mixed-gas hydrate system were investigated by means of static temperature measurement and Raman spectroscopic analysis. Raman spectra indicated that the crystal structure of the carbon dioxide + cyclopropane mixed-gas hydrate changes from structure-I to structure-II and back to structure-I with an increase of the equilibrium carbon dioxide composition at 279.15 K, while each simple gas hydrate belongs to structure-I at the temperature. Whereas, unlike 279.15 K, no structural phase transition occurs along the isothermal stability boundary at 284.15 K.  相似文献   

4.
Liquid–vapor (LV) and liquid–liquid (LL) phase equilibria in the carbon dioxide + pyrrole system were measured at temperatures between 313 K and 333 K, and pressures between 8.4 MPa and 15.1 MPa. The data were used to predict the overall phase behavior of the system using the Patel–Teja equation of state and the Mathias–Klotz–Prausnitz mixing rules with two temperature-independent parameters. The calculations suggest that the carbon dioxide + pyrrole system may exhibit type IV phase behavior according to the classification of Scott and van Konynenburg.  相似文献   

5.
Vapour–liquid equilibrium measurements for binary and ternary (carbon dioxide + β-myrcene and carbon dioxide + β-myrcene + hydrogen) systems have been carried out at 323.15 K and pressures in the range from 7 MPa to the critical pressure of the binary mixture and at pressures from 10 to 14 MPa for the investigated ternary systems. Samples from the coexisting phases were taken, and compositions were determined experimentally. Results were correlated using the Peng–Robinson and the Soave–Redlich–Kwong equations of state with the Mathias–Klotz–Prausnitz mixing rule. The set of interaction parameters for the employed equations of state and applied mixing rule for the system of CO2 + β-myrcene and of CO2 + β-myrcene + H2 were obtained. Additionally, the volume expansion of the liquid phase for the binary mixtures (carbon dioxide + β-myrcene and carbon dioxide + limonene) were measured at 323.15 K and at pressures from 4 MPa up to very close to the critical pressure of the mixture. The ratio of liquid phase total volumes at the given pressure and at 4 MPa was calculated.  相似文献   

6.
This paper reports measurements of the solubility of water in liquid and supercritical fluid mixtures of dimethyl ether and carbon dioxide. The measurements were made by extracting water under saturation conditions using premixed liquid dimethyl ether–carbon dioxide mixtures. Results are reported for temperatures of 313.8 K and 333.3 K at 9.0 MPa and 15.0 MPa. Results are fitted to the Peng–Robinson cubic equation of state with mixing rules according to Wong and Sandler, using binary interaction parameters fitted to the literature data for the respective binary systems: dimethyl ether–water; dimethyl ether–carbon dioxide; and carbon dioxide–water. Liquid densities for dimethyl ether–carbon dioxide mixtures, measured using a coriolis flow instrument, are also reported.  相似文献   

7.
Isobaric vapor–liquid equilibrium data at 50, 75, and 94 kPa have been determined for the binary system ETBE + propan-1-ol, in the temperature range 325–368 K. The measurements were made in a vapor–liquid equilibrium still with circulation of both phases. Mixing volumes have been also determined from density measurements at 298.15 K and 101.3 kPa and, at the same temperature and pressure, the dependence of interfacial tension on concentration has been measured using the pendant drop technique. According to experimental results, the mixture presents positive deviation from ideal behavior and azeotropy is present at 75 and 94 kPa. No azeotrope was detected at 50 kPa. The mixing volumes of the system are negative over the whole mole fraction range, and the interfacial tensions exhibit negative deviation from the linear behavior. The activity coefficients and boiling points of the solutions were well correlated with the mole fraction using the Wohl, Wilson, NRTL, UNIQUAC equations. Excess volume data and interfacial tensions were correlated using the Redlich–Kister model.  相似文献   

8.
Phase equilibria for the CH4 + CO2 + H2O system have been investigated in the past, but mole fraction of methane and carbon dioxide in the bulk liquid phase has not been measured under hydrate–liquid–vapor equilibrium. Equilibrium liquid composition is very important as it defines the driving force for hydrate growth. This study presents the solubility of methane and carbon dioxide under H–Lw–V equilibrium. Emphasis is made on the effect of pressure along the respective isotherms on the equilibrium mole fraction of the individual hydrate formers in the liquid.  相似文献   

9.
Experimental vapor–liquid equilibria for the systems carbon dioxide + 1-butanol and carbon dioxide + 2-butanol were obtained from 313 to 363 K via a static-analytic set-up. A vibrating U-tube densitometer was coupled to this apparatus to perform simultaneous measurements of both saturated densities of the vapor and liquid phases. The suitability of this apparatus was checked by comparing the experimental vapor–liquid equilibrium and saturated density results with the literature data. The experimental vapor–liquid equilibrium data were correlated using the Peng–Robinson equation of state coupled to the Wong–Sandler mixing rules with good agreement; however densities using the same model were not satisfactorily represented.  相似文献   

10.
A new experimental apparatus for performing simultaneous determination of high-pressure vapor–liquid equilibria (VLE) and saturated densities was developed in this work. The experimental methodology was verified by measuring these properties for the carbon dioxide + 1-propanol and carbon dioxide + 2-propanol systems from 313 to 363 K. The apparatus is based on the static-analytic method for VLE determinations and was slightly modified by coupling a vibrating U-tube densitometer to obtain saturated densities for both vapor and liquid phases. VLE measurements agreed with previous literature data and were correlated with the Peng–Robinson equation of state coupled to the Wong–Sandler mixing rules. Saturation densities at temperatures above 313 K have not been published up to now.  相似文献   

11.
Isothermal vapor–liquid equilibria at 333.15 K and 353.15 K for four binary mixtures of benzene + nonane, toluene + o-xylene, m-xylene + sulfolane and o-xylene + sulfolane have been obtained at pressures ranged from 0 to 101.3 kPa over the whole composition range. The Wilson, NRTL and UNIQUAC activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Peng–Robinson equation of state in calculating the vapor mole fraction. Liquid and vapor densities of these solutions were measured by using two vibrating tube densitometers. The excess molar volumes of the liquid phase were also determined. The Pxy phase behavior indicates that mixtures of m-xylene + sulfolane, o-xylene + sulfolane and benzene + nonane present large positive deviations from the ideal solution and belong to endothermic mixings because their excess Gibbs energies are positive.  相似文献   

12.
Isothermal vapor–liquid equilibria at 333.15 K, 343.15 K and 353.15 K for three binary mixtures of o-xylene, m-xylene and p-xylene individually mixed with N-methylformamide (NMF), have been obtained at pressures ranged from 0 kPa to 101.3 kPa over the whole composition range. The Wilson, NRTL and UNIQUAC activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Peng–Robinson equation of state in calculating the vapor mole fraction. Liquid and vapor densities were measured by using two vibrating tube densitometers. The excess molar volumes of the liquid phase were also determined. Three systems of o-xylene + NMF, m-xylene + NMF and p-xylene + NMF mixtures present large positive deviations from the ideal solution and belong to endothermic mixings because their excess Gibbs energies are positive. Temperature dependent intermolecular parameters in the NRTL model correlation were finally obtained in this study.  相似文献   

13.
Vapor–liquid equilibria and saturated density for carbon dioxide + tetrahydrofuran mixtures at high pressures were measured by the analytical method at the temperatures 298.15 and 313.15 K. The experimental apparatus equipped with three Anton Paar DMA 512S vibrating tube density meters was previously developed for measuring vapor–liquid–liquid equilibrium at high pressures. The equilibrium composition and saturated density of each phase were determined by gas chromatograph and vibrating tube density meters, respectively. The bubble point pressure at the temperature 313.15 K was further measured by the synthetic method. The experimental data were correlated with Soave–Redlich–Kwong (SRK) equation of state and the pseudocubic equation of state.  相似文献   

14.
Fluid–fluid and fluid–solid phase equilibrium were experimentally determined under pressure on the system methane + heptadecane using a full visibility cell. Measurements were performed using the synthetic method on mixtures ranging from pure heptadecane to 99% of methane. The liquid–solid phase transitions were investigated up to 90 MPa and fluid phase boundary was studied in the temperature domain from 293 to 373 K. The appearance of a minimum in the three phase (V–L–S) equilibrium curve is discussed and it is shown that the difference in the solid phase structure and the presence of a solid–solid phase transition do not affect significantly the phase diagram determined.  相似文献   

15.
Liquid–vapour and fluid–solid phase transitions were experimentally determined under pressure on the system methane + a ternary waxy mixture using a full visibility cell. The wax was an approximately equimolar mixture of n-C16, n-C17 and n-C18, the composition being chosen to obtain a mixture with an average molecular weight similar to heptadecane. Measurements were performed according to the synthetic method on different mixtures ranging from 0 to 99.5 mol% of methane. The liquid–solid phase transitions were investigated up to 100 MPa and fluid phase boundary was studied in the temperature domain from 293 to 373 K. Measurements performed on this pseudo-binary system were compared to the phase diagram of the binary system methane + heptadecane.  相似文献   

16.
A titanium dioxide–silicon carbide nanohybrid (TiO2–SiC) with enhanced electrochemical performance was successfully prepared through a facile generic in situ growth strategy. Monodispersed ultrafine palladium nanoparticles (Pd NPs) with a uniform size of ∼2.3 nm were successfully obtained on the TiO2–SiC surface via a chemical reduction method. The Pd-loaded TiO2–SiC nanohybrid (Pd@TiO2–SiC) was characterized by transmission electron microscopy and X-ray diffractometry. A method for the simultaneous electrochemical determination of hydroquinone (HQ) and bisphenol A (BPA) using a Pd@TiO2–SiC nanocomposite-modified glassy carbon electrode was established. Utilizing the favorable properties of Pd NPs, the Pd@TiO2–SiC nanohybrid-modified glassy carbon electrode exhibited electrochemical performance superior to those of TiO2–SiC and SiC. Differential pulse voltammetry was successfully used to simultaneously quantify HQ and BPA within the concentration range of 0.01–200 μM under optimal conditions. The detection limits (S/N = 3) of the Pd@TiO2–SiC nanohybrid electrode for HQ and BPA were 5.5 and 4.3 nM, respectively. The selectivity of the electrochemical sensor was improved by introducing 10% ethanol to the buffer medium. The practical application of the modified electrode was demonstrated by the simultaneous detection of HQ and BPA in tap water and wastewater samples. The simple and straightforward strategy presented in this paper are important for the facile fabrication of ultrafine metal NPs@metal oxide–SiC hybrids with high electrochemical performance and catalytic activity.  相似文献   

17.
The phase behavior of carbon dioxide (CO2) and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) was measured and correlated at high pressures up to ∼40 MPa and at temperatures between 353.15 K and 373.15 K. The solubility data of CO2 in [bmim][Cl] were obtained by observing the bubble point pressure at specific temperatures. A variable-volume view cell, which is a high-pressure equilibrium apparatus, was used to measure the CO2 + [bmim][Cl] system solubility under varying pressure and temperature conditions. In addition, liquid–liquid–vapor (LLV) three-phase behavior was investigated using the equilibrium cell to be able to determine the classification of phase-behavior type by Scott and Van Konynenburg. Based on the LLV phase behavior, this system most likely has type III phase-behavior which is common for IL + CO2 systems. The resulting data showed that CO2 dissolved well in the IL at low CO2 concentrations, but that the pressure derivative of CO2 solubility dramatically decreased as the mole fraction of CO2 was increased. The experimental data were well fitted by the Peng–Robinson equation of state with a quadratic mixing rule and cubic parameters estimated by the Joback method.  相似文献   

18.
Cubic lanthanum oxide was prepared by the oxidation of lanthanum iodide at 700 °C in air atmosphere. The oxide was characterized by X-ray fluorescence analysis, X-ray diffraction, and Fourier-transformed infrared spectroscopy. The cubic La2O3 is most likely a single lanthanum oxide phase containing periodate hydrate and hydroxycarbonate species. The cubic lanthanum oxide is found to be chemically stable even if they are dispersed in water because of the presence of hydroxycarbonate and periodate hydrate species which inhibit the bulk hydroxylation.  相似文献   

19.
Raman spectra of intramolecular vibration mode for each guest species in the methane + tetrafluoromethane (CF4) mixed-gas hydrate crystal have been measured at 291.1 K. Both of pure guest species generate the structure-I hydrate in the present pressure ranges. Isothermal phase-equilibrium curve exhibits two discontinuous points around the equilibrium methane compositions (water-free) in the gas phase of 0.3 and 0.8. At the above points, the Raman spectra of both guest molecules have been drastically changed. One of the most important findings is that the crystal of methane + tetrafluoromethane mixed-gas hydrate shows the structural phase-transition (from the structure-I to the structure-II and back to the structure-I) caused by composition changes.  相似文献   

20.
A flow-type method was adopted to measure the vapor–liquid equilibria for methanol + methyl laurate and methanol + methyl myristate systems at 493–543 K, near the critical temperature of methanol (Tc = 512.64 K), and 2.16–8.49 MPa. The effect of temperature and fatty acid methyl esters to the phase behavior was discussed. The mole fractions of methanol in liquid phase are almost the same for both systems. In vapor phase, the mole fractions of methanol are very close to unity at all temperatures. The present vapor–liquid equilibrium data were correlated by PRASOG. A binary parameter was introduced to the combining rule of size parameter. The binary parameters of methanol + fatty acid methyl ester systems were determined by fitting the present experimental data. The correlated results are in good agreement with the experimental data. The vapor–liquid equilibria for methanol + methyl laurate + glycerol and methanol + methyl myristate + glycerol ternary systems were also predicted using the methanol + fatty acid methyl ester binary parameters. The mole fractions of methanol in vapor phase are around unity even if glycerol is included in the systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号