首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Liu D  Zhou X  Zhong R  Ye N  Chang G  Xiong W  Mei X  Lin B 《Talanta》2006,68(3):616-622
Microchip electrophoresis is a promising technique for analysis of bio-molecules. It has the advantages of fast analysis, high sensitivity, high resolution and low-cost of samples. Plastic chip has the potential of mass production for clinical use for its advantages in biocompatibility and low cost. In this work, the method for fabrication of poly(methyl methacrylate) (PMMA) chip was described, and conditions for DNA separation were investigated with the chip. The PMMA microchip was used for detection of multiplex PCR products of 18 and 36 cases with SARS and hepatitis B virus infection under optimized separation conditions. Microchip electrophoresis showed higher sensitivity, higher resolution and less time consumption when compared with gel electrophoresis. The microchip electrophoresis with PMMA chip provided a rapid, sensitive and reliable method for analysis of multiplex PCR products.  相似文献   

2.
An equation of state (EOS) for square-well chain molecules with variable range developed on the basis of statistical mechanics for chemical association in our previous work is employed for the calculations of pVT properties and vapor–liquid equilibria (VLE) of pure non-associating fluids. The molecular parameters for 73 normal substances and 46 polymers are obtained from saturated vapor pressure and liquid molar volume data for normal fluids or pVT data for polymers. Linear relations are found for the molecular parameters of normal fluids with their molecular weight of homologous compounds. This indicates that the model parameters of homologous series, subsequently pVT and VLE, can be predicted when experimental data are not available. The predicted saturated vapor pressures and/or liquid volumes are satisfactory through the generalized model parameters. The calculated VLE and pVT for normal fluids and polymers by this EOS are compared with those from other engineering models, respectively.  相似文献   

3.
In this work, two “classical” (UNIFAC-FV, Entropic-FV) and two “recent” free-volume (FV) models (Kannan-FV, Freed-FV) are comparatively evaluated for polymer–solvent vapor–liquid equilibria including both aqueous and non-aqueous solutions. Moreover, some further developments are presented here to improve the performance of a recent model, the so-called Freed-FV. First, we propose a modification of the Freed-FV model accounting for the anomalous free-volume behavior of aqueous systems (unlike the other solvents, water has a lower free-volume percentage than polymers). The results predicted by the modified Freed-FV model for athermal and non-athermal polymer systems are compared to other “recent” and “classical” FV models, indicating an improvement for the modified Freed-FV model for aqueous polymer solutions. Second, for the original Freed-FV model, new UNIFAC group energy parameters are regressed for aqueous and alcohol solutions, based on the physical values of the van der Waals volume and surface areas for both FV-combinatorial and residual contributions. The prediction results of both “recent” and “classical” FV models using the new regressed energy parameters are significantly better, compared to using the classical UNIFAC parameters, for VLE of aqueous and alcohol polymer systems.  相似文献   

4.
The first part of the paper deals with a critical discussion of the methodical basis of essential work of fracture (EWF) concept with respect to the specimen geometry (especially the notch depth) and application to polymers. In the second part, an in situ testing device, which combines a tensile testing machine with an optical strain-field measuring system, has successfully demonstrated possibility of characterization of fracture behaviour of polystyrene-polybutadiene block copolymers and block copolymer/homopolymer blends as examples of nanostructured polymer materials. It has been shown that knowledge of the time evolution of the strain field close to the crack tips leads to a simple verification of the basic precondition for the applicability of the EWF concept, the precondition “plastic zone coalescence-before-stable crack propagation”.  相似文献   

5.
In recent years, many factors influencing phase behavior of polymer blends have been studied because of their widely technological importance, as a simple method of formulating new materials with tailored properties which make them suitable for a variety of applications. This work has three main goals which were reached by using the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) and the Sanchez–Lacombe (SL) non-cubic equations of state (EoS), which in previous works have shown their ability to handle long chain and associating interactions. First, both equations of state were tested with the correlation of the specific volumes of pure blends (PBD/PS, PPO/PS, PVME/PS, PEO/PES) and the prediction of the specific volumes for blends; second, the modeling of blend miscibilities in the liquid–liquid equilibria (LLE) of PBD/PS, PPG/PEGE, PVME/PS, PEO/PES, and PnPMA/PS blends; third, the modeling of the phase behavior of PS/PVME blends at various compositions in the presence of CO2. PC-SAFT and SL pure-component parameters were regressed by fitting pure-component data of real substances (liquid pressure–volume–temperature, PVT, data for polymers and vapor pressure and saturated liquid molar volume for CO2) and the fluid phase behavior of blend systems were simulated fitting one binary interaction parameter (kij) by regression of experimental data using the modified likelihood maximum method. Results were compared with experimental data obtained from literature and an excellent agreement was obtained with both EoS, which were also capable of predicting the fluid phase behavior corresponding to the critical solution temperatures (LCST: lower critical solution temperature, UCST: upper critical solution temperature) of blends.  相似文献   

6.
Mass spectrometry (MS) is the most versatile and comprehensive method in “OMICS” sciences (i.e. in proteomics, genomics, metabolomics and lipidomics). The applications of MS and tandem MS (MS/MS or MSn) provide sequence information of the full complement of biological samples in order to understand the importance of the sequences on their precise and specific functions. Nowadays, the control of polymer sequences and their accurate characterization is one of the significant challenges of current polymer science. Therefore, a similar approach can be very beneficial for characterizing and understanding the complex structures of synthetic macromolecules. MS-based strategies allow a relatively precise examination of polymeric structures (e.g. their molar mass distributions, monomer units, side chain substituents, end-group functionalities, and copolymer compositions). Moreover, tandem MS offer accurate structural information from intricate macromolecular structures; however, it produces vast amount of data to interpret. In “OMICS” sciences, the software application to interpret the obtained data has developed satisfyingly (e.g. in proteomics), because it is not possible to handle the amount of data acquired via (tandem) MS studies on the biological samples manually. It can be expected that special software tools will improve the interpretation of (tandem) MS output from the investigations of synthetic polymers as well. Eventually, the MS/MS field will also open up for polymer scientists who are not MS-specialists. In this review, we dissect the overall framework of the MS and MS/MS analysis of synthetic polymers into its key components. We discuss the fundamentals of polymer analyses as well as recent advances in the areas of tandem mass spectrometry, software developments, and the overall future perspectives on the way to polymer sequencing, one of the last Holy Grail in polymer science.  相似文献   

7.
Membrane emulsification (ME) is a relatively new technique for the highly controlled production of particulates. This review focuses on the recent developments in this area, ranging from the production of simple oil-in-water (O/W) or water-in-oil (W/O) emulsions to multiple emulsions of different types, solid-in-oil-in-water (S/O/W) dispersions, coherent solids (silica particles, solid lipid microspheres, solder metal powder) and structured solids (solid lipid microcarriers, gel microbeads, polymeric microspheres, core-shell microcapsules and hollow polymeric microparticles). Other emerging technologies that extend the capabilities into different membrane materials and operation methods (such as rotating membranes, repeated membrane extrusion of coarsely pre-emulsified feeds) are introduced. The results of experimental work carried out by cited researchers in the field together with those of the current authors are presented in a tabular form in a rigorous and systematic manner. These demonstrate a wide range of products that can be manufactured using different membrane approaches. Opportunities for creation of new and novel entities are highlighted for low throughput applications (medical diagnostics, healthcare) and for large-scale productions (consumer and personal products).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号