首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frequency and intensity discrimination in humans and monkeys   总被引:1,自引:0,他引:1  
Frequency and intensity DLs were compared in humans and monkeys using a repeating standard "yes-no" procedure in which subjects reported frequency increments, frequency decrements, intensity increments, or intensity decrements in an ongoing train of 1.0-kHz tone bursts. There was only one experimental condition (intensity increments) in which monkey DLs (1.5-2.0 dB) overlapped those of humans (1.0-1.8 dB). For discrimination of both increments and decrements in frequency, monkey DLs (16-33 Hz) were approximately seven times larger than those of humans (2.4-4.8 Hz), and for discrimination of intensity decrements, monkey DLs (4.4-7.0 dB) were very unstable and larger than those of humans (1.0-1.8 dB). For intensity increment discrimination, humans and monkeys also exhibited similar DLs as SL was varied. However, for frequency increment discrimination, best DLs for humans occurred at a high (50 dB) SL, whereas best DLs for monkeys occurred at a moderate (30 dB) SL. Results are discussed in terms of various neural mechanisms that might be differentially engaged by humans and monkeys in performing these tasks; for example, different amounts of temporal versus rate coding in frequency discrimination, and different mechanisms for monitoring rate decreases in intensity discrimination. The implications of these data for using monkeys as models of human speech sound discrimination are also discussed.  相似文献   

2.
Abilities to detect and discriminate ten synthetic steady-state English vowels were compared in Old World monkeys (Cercopithecus, Macaca) and humans using standard animal psychophysical procedures and positive-reinforcement operant conditioning techniques. Monkeys' detection thresholds were close to humans' for the front vowels /i-I-E-ae-E), but 10-20 dB higher for the back vowels /V-D-C-U-u/. Subjects were subsequently presented with groups of vowels to discriminate. All monkeys experienced difficulty with spectrally similar pairs such as /V-D/, /E-ae/, and /U-u/, but macaques were superior to Cercopithecus monkeys. Humans discriminated all vowels at 100% correct levels, but their increased response latencies reflected spectral similarity and correlated with higher error rates by monkeys. Varying the intensity level of the vowel stimuli had little effect on either monkey or human discrimination, except at the lowest levels tested. These qualitative similarities in monkey and human vowel discrimination suggest that some monkey species may provide useful models of human vowel processing at the sensory level.  相似文献   

3.
Three experiments tested the hypothesis that fundamental frequency (fo) discrimination depends on the resolvability of harmonics within a tone complex. Fundamental frequency difference limens (fo DLs) were measured for random-phase harmonic complexes with eight fo's between 75 and 400 Hz, bandpass filtered between 1.5 and 3.5 kHz, and presented at 12.5-dB/component average sensation level in threshold equalizing noise with levels of 10, 40, and 65 dB SPL per equivalent rectangular auditory filter bandwidth. With increasing level, the transition from large (poor) to small (good) fo DLs shifted to a higher fo. This shift corresponded to a decrease in harmonic resolvability, as estimated in the same listeners with excitation patterns derived from measures of auditory filter shape and with a more direct measure that involved hearing out individual harmonics. The results are consistent with the idea that resolved harmonics are necessary for good fo discrimination. Additionally, fo DLs for high fo's increased with stimulus level in the same way as pure-tone frequency DLs, suggesting that for this frequency range, the frequencies of harmonics are more poorly encoded at higher levels, even when harmonics are well resolved.  相似文献   

4.
Difference limens (DLs) for linear frequency transitions using a 1.0-kHz pulsed-tone standard were obtained from 6- to 9-month-old human infants in a series of three experiments. A repeating standard "yes-no" operant headturning technique and an adaptive staircase (tracking) procedure were used to obtain difference limens from a total of 71 infants. The DLs for 300-ms upward and downward linear frequency sweeps were approximately 3%-4% when the repeating standard was an unmodulated 1.0-kHz pulsed tone of 300-ms duration. These DLs for frequency sweeps were not significantly different from DLs for frequency increments and decrements using 330-ms pulsed tones [J. M. Sinnott and R. N. Aslin, J. Acoust. Soc. Am. 78, 1986-1992 (1985)]. The DLs for frequency sweeps of 50 ms appended to the beginning or the end of a 250-ms unmodulated 1.0-kHz tone were approximately 6%-7%. This greater DL for brief frequency sweeps was confirmed by varying the duration but not the extent of the sweep. Finally, DLs were greater than 50% when the repeating standard was a 50-ms rising or falling frequency sweep appended to the beginning of a 250-ms unmodulated 1.0-kHz tone. These results suggest that rapid frequency transitions are much more difficult to discriminate from frequency transitions of the same category (rising or falling) than from either a frequency transition of the opposite category (falling or rising) or an unmodulated tone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Auditory duration DLs at 2.0 kHz were measured in Old World monkeys (Macaca, Cercopithecus) and humans using a go, no-go repeating standard AX procedure and positive reinforcement operant conditioning techniques. For a 200-ms standard, monkey DLs were 45-125 ms, compared to 15-27 ms for humans. Weber fractions (delta T/T) for all species were smallest at standard durations of 200-400 ms and increased as standard duration decreased to 25 ms. Varying intensity from 30-70 dB SPL had only minor effects on DLs, except at the lowest levels tested, where DLs were elevated slightly. Monkeys had difficulty discriminating duration decrements, in contrast to humans. Results are discussed in relation to other comparative psychoacoustic data and primate vocal communication, including human speech.  相似文献   

6.
Frequency and intensity DLs were measured in 26 human infants (ages 7-9 months) and six young adults using a repeating standard "yes-no" operant headturning technique and an adaptive staircase (tracking) psychophysical procedure. Subjects were visually reinforced for responding to frequency increments, frequency decrements, intensity increments, or intensity decrements in an ongoing train of 1.0-kHz tone bursts, and stimulus control was monitored using randomly interleaved probe and catch trials. Infants were easily conditioned to respond to both increments and decrements in frequency, and DLs ranged from 11-29 Hz, while adult DLs ranged from 3-5 Hz. Infants also easily discriminated intensity increments, and DLs ranged from 3-12 dB, while adult DLs ranged from 1-2 dB. No infants successfully discriminated intensity decrements, although adults experienced no difficulty with this task and produced DLs similar to those for increments. The apparent inability of infants to discriminate intensity decrements suggests that the infant CNS may not be well adapted to monitor rate decreases in populations of peripheral auditory neurons.  相似文献   

7.
This paper examines how intensity discrimination depends on the test frequency, the level, and the subjects's high-frequency hearing. Three experiments were performed. In the first experiment, intensity discrimination of pulsed tones was measured as a function of level at 1 and 14 kHz in five listeners. Results show less deviation from Weber's law at 14 kHz than at 1 kHz. In the second experiment, intensity discrimination was measured for a 1-kHz tone at 90-dB SPL as a function of the cutoff frequency of a high-pass masking noise in two listeners. Results show that the audibility of very high frequencies is important for frequency discrimination at 1 kHz. The DL increased by a factor between 1.5 and 2.0 as the cutoff frequency of the noise was lowered from 19 to 6 kHz. In the third experiment, thresholds from 6 to 20 kHz and intensity discrimination for a 1-kHz tone was measured in 12 listeners. Results show that the DLs at 80-dB SPL are correlated with the ability to hear very high frequencies. Results of all three experiments are consistent with the multiband version of the excitation-pattern model for intensity discrimination [Florentine and Buus, J. Acoust. Soc. Am. 70, 1646-1654 (1981)].  相似文献   

8.
Fundamental frequency (f0) difference limens (DLs) were measured as a function of f0 for sine- and random-phase harmonic complexes, bandpass filtered with 3-dB cutoff frequencies of 2.5 and 3.5 kHz (low region) or 5 and 7 kHz (high region), and presented at an average 15 dB sensation level (approximately 48 dB SPL) per component in a wideband background noise. Fundamental frequencies ranged from 50 to 300 Hz and 100 to 600 Hz in the low and high spectral regions, respectively. In each spectral region, f0 DLs improved dramatically with increasing f0 as approximately the tenth harmonic appeared in the passband. Generally, f0 DLs for complexes with similar harmonic numbers were similar in the two spectral regions. The dependence of f0 discrimination on harmonic number presents a significant challenge to autocorrelation (AC) models of pitch, in which predictions generally depend more on spectral region than harmonic number. A modification involving a "lag window"is proposed and tested, restricting the AC representation to a limited range of lags relative to each channel's characteristic frequency. This modified unitary pitch model was able to account for the dependence of f0 DLs on harmonic number, although this correct behavior was not based on peripheral harmonic resolvability.  相似文献   

9.
Thresholds for amplitude modulation detection were obtained from four subjects at frequencies of 2, 4, 6, 8, and 10 kHz for sensation levels of 15, 30, 45, and 60 dB and modulation rates of 2, 4, and 8 Hz. High-frequency difference limens calculated from amplitude modulation thresholds were found to change nonmonotonically as a function of sensation level, independent of modulation rate. This nonmonotonic relation stemmed mainly from a gradual reduction of the difference limen at the lowest sensation level with increasing frequency. Difference limens for pulsed tone discrimination were also measured in two of the subjects at 2, 6, and 10 kHz and sensation levels of 15, 30, 45, and 60 dB. The relation between intensity discrimination and sensation level was similar to that found for amplitude modulation detection. These findings are interpreted as indicating that the nonmonotonic relation between sensation level and intensity resolution is a general characteristic of stimulus processing at higher frequencies.  相似文献   

10.
Humans were trained to categorize problem non-native phonemes using an animal psychoacoustic procedure that trains monkeys to greater than 90% correct in phoneme identification [Sinnott and Gilmore, Percept. Psychophys. 66, 1341-1350 (2004)]. This procedure uses a manual left versus right response on a lever, a continuously repeated stimulus on each trial, extensive feedback for errors in the form of a repeated correction procedure, and training until asymptotic levels of performance. Here, Japanese listeners categorized the English liquid contrast /r-l/, and English listeners categorized the Middle Eastern dental-retroflex contrast /d-D/. Consonant-vowel stimuli were constructed using four talkers and four vowels. Native listeners and phoneme contrasts familiar to all listeners were included as controls. Responses were analyzed using percent correct, response time, and vowel context effects as measures. All measures indicated nativelike Japanese perception of /r-l/ after 32 daily training sessions, but this was not the case for English perception of /d-D/. Results are related to the concept of "robust" (more easily recovered) versus "fragile" (more easily lost) phonetic contrasts [Burnham, Appl. Psycholing. 7, 207-240 (1986)].  相似文献   

11.
张树林  刘扬波  曾佳  王永良  孔祥燕  谢晓明 《物理学报》2012,61(2):20701-020701
本文利用磁屏蔽室和二阶轴向梯度计抑制环境磁场噪声, 建立了单通道脑磁探测系统, 并对不用声音频率下脑听觉激励磁场N100m响应进行了初步探测.结果显示, 1000 Hz音频和100 ms持续声音激励下, N100m峰值的典型强度约为0.4 pT.在低的声音频率激励下, N100m峰出现延时, 100 Hz 和1000 Hz之间的延时差别达到25 ms.相比于1 kHz特定频率的声音激励, 1—4 kHz 随机变频下的N100m峰幅度增强, 出现了数毫秒的延时.本研究为下一步利用软件梯度计进行多通道脑磁系统和听觉机理研究奠定了一定的基础.  相似文献   

12.
These experiments measure the ability to detect a change in the relative phase of a single component in a harmonic complex tone. Complex tones containing the first 20 harmonics of 50, 100, or 200 Hz, all at equal amplitude, were used. All of the harmonics except one started in cosine phase. The remaining harmonic started in cosine phase, but was shifted in phase half-way through either the first or the second of the two stimuli comprising a trial. The subject had to identify the stimulus containing the phase-shifted component. For normally hearing subjects tested at a level of 70 dB SPL per component, thresholds for detecting the phase shift [i.e., phase difference limens (DLs)] were smallest (2 degrees-4 degrees) for harmonics above the eighth and for the lowest fundamental frequency (F0). Changes in phase were not detectable for harmonic numbers below three or four at the lowest F0 and below 5-13 at the highest F0. The DLs increased slightly for the highest harmonics in the complexes. The DLs increased markedly with decreasing level, except for the highest harmonic, where only a small effect of level was found. Subjects reported that the phase-shifted harmonic appeared to "pop out" and was heard with a pure-tone quality. A pitch-matching experiment demonstrated that the pitch of this tone corresponded to the frequency of the phase-shifted component. For the highest harmonic, the phase shift was associated with a downward shift of the edge pitch heard in the reference (all cosine phase) stimulus. When the phases of the components in the reference stimulus were randomized, phase DLs were much higher (and often impossible to measure), the pop-out phenomenon was not observed, and no edge pitch was heard. Subjects with unilateral cochlear hearing impairment generally showed poorer phase sensitivity in their impaired than in their normal ears, when the two ears were compared at equal sound-pressure levels. However, at comparable sensation levels, the impaired ears sometimes showed lower phase DLs. The results are explained by considering the waveforms that would occur at the outputs of the auditory filters in response to these stimuli.  相似文献   

13.
Humans and monkeys were compared in their differential sensitivity to various acoustic cues underlying voicing contrasts specified by voice-onset time (VOT) in utterance-initial stop consonants. A low-uncertainty repeating standard AX procedure and positive-reinforcement operant conditioning techniques were used to measure difference limens (DLs) along a VOT continuum from--70 ms (prevoiced/ba/) to 0 ms (/ba/) to + 70 ms (/pa/). For all contrasts tested, human sensitivity was more acute than that of monkeys. For voicing lag, which spans a phonemic contrast in English, human DLs for a/ba/(standard)-to-/pa/ (target) continuum averaged 8.3 ms compared to 17 ms for monkeys. Human DLs for a/pa/-to-/ba/ continuum averaged 11 ms compared to 25 ms for monkeys. Larger species differences occurred for voicing lead, which is phonemically nondistinctive in English. Human DLs for a /ba/-to-prevoiced/ba/ continuum averaged 8.2 ms and were four times lower than monkeys (35 ms). Monkeys did not reliably discriminate prevoiced /ba/-to-/ba/, whereas humans DLs averaged 18 ms. The effects of eliminating cues in the English VOT contrasts were also examined. Removal of the aspiration noise in /pa/ greatly increased the DLs and reaction times for both humans and monkeys, but straightening out the F1 transition in /ba/ had only minor effects. Results suggest that quantitative differences in sensitivity should be considered when using monkeys to model the psychoacoustic level of human speech perception.  相似文献   

14.
Fundamental frequency difference limens (F0DLs) were measured for a target harmonic complex tone with nominal fundamental frequency (F0) of 200 Hz, in the presence and absence of a harmonic masker with overlapping spectrum. The F0 of the masker was 0, ± 3, or ± 6 semitones relative to 200 Hz. The stimuli were bandpass filtered into three regions: 0-1000 Hz (low, L), 1600-2400 Hz (medium, M), and 2800-3600 Hz (high, H), and a background noise was used to mask combination tones and to limit the audibility of components falling on the filter skirts. The components of the target or masker started either in cosine or random phase. Generally, the effect of F0 difference between target and masker was small. For the target alone, F0DLs were larger for random than cosine phase for region H. For the target plus masker, F0DLs were larger when the target had random phase than cosine phase for regions M and H. F0DLs increased with increasing center frequency of the bandpass filter. Modeling using excitation patterns and "summary autocorrelation" and "stabilized auditory image" models suggested that use of temporal fine structure information can account for the small F0DLs obtained when harmonics are barely, if at all, resolved.  相似文献   

15.
The audiograms of three Japanese macaques and seven humans were determined in a free-field environment using loudspeakers. The monkeys and humans were tested using tones ranging from 8 Hz to 40 kHz and 4 Hz to 22.4 kHz, respectively. At a level of 60 dB sound pressure level the monkeys were able to hear tones extending from 28 Hz to 37 kHz with their best sensitivity of 1 dB occurring at 4 kHz. The human 60-dB hearing range extended from 31 Hz to 17.6 kHz with a best sensitivity of -10 dB at 2 and 4 kHz. These results indicate that the Japanese macaque has low-frequency hearing equal to that of humans and better than that indicated by previous audiograms obtained using headphones.  相似文献   

16.
Frequency resolution was evaluated for two normal-hearing and seven hearing-impaired subjects with moderate, flat sensorineural hearing loss by measuring percent correct detection of a 2000-Hz tone as the width of a notch in band-reject noise increased. The level of the tone was fixed for each subject at a criterion performance level in broadband noise. Discrimination of synthetic speech syllables that differed in spectral content in the 2000-Hz region was evaluated as a function of the notch width in the same band-reject noise. Recognition of natural speech consonant/vowel syllables in quiet was also tested; results were analyzed for percent correct performance and relative information transmitted for voicing and place features. In the hearing-impaired subjects, frequency resolution at 2000 Hz was significantly correlated with the discrimination of synthetic speech information in the 2000-Hz region and was not related to the recognition of natural speech nonsense syllables unless (a) the speech stimuli contained the vowel /i/ rather than /a/, and (b) the score reflected information transmitted for place of articulation rather than percent correct.  相似文献   

17.
Learning to perceive pitch differences   总被引:2,自引:0,他引:2  
This paper reports two experiments concerning the stimulus specificity of pitch discrimination learning. In experiment 1, listeners were initially trained, during ten sessions (about 11,000 trials), to discriminate a monaural pure tone of 3000 Hz from ipsilateral pure tones with slightly different frequencies. The resulting perceptual learning (improvement in discrimination thresholds) appeared to be frequency-specific since, in subsequent sessions, new learning was observed when the 3000-Hz standard tone was replaced by a standard tone of 1200 Hz, or 6500 Hz. By contrast, a subsequent presentation of the initial tones to the contralateral ear showed that the initial learning was not, or was only weakly, ear-specific. In experiment 2, training in pitch discrimination was initially provided using complex tones that consisted of harmonics 3-7 of a missing fundamental (near 100 Hz for some listeners, 500 Hz for others). Subsequently, the standard complex was replaced by a standard pure tone with a frequency which could be either equal to the standard complex's missing fundamental or remote from it. In the former case, the two standard stimuli were matched in pitch. However, this perceptual relationship did not appear to favor the transfer of learning. Therefore, the results indicated that pitch discrimination learning is, at least to some extent, timbre-specific, and cannot be viewed as a reduction of an internal noise which would affect directly the output of a neural device extracting pitch from both pure tones and complex tones including low-rank harmonics.  相似文献   

18.
Speech coding in the auditory nerve: III. Voiceless fricative consonants   总被引:1,自引:0,他引:1  
Responses of auditory-nerve fibers in anesthetized cats were recorded for synthetic voiceless fricative consonants. The four stimuli (/x/, /s/, /s/, and /f/) were presented at two levels corresponding to speech in which the levels of the vowels would be approximately 60 and 75 dB SPL, respectively. Discharge patterns were characterized in terms of PST histograms and their power spectra. For both stimulus levels, frequency regions in which the stimuli had considerable energy corresponded well with characteristic-frequency (CF) regions in which average discharge rates were the highest. At the higher level, the profiles of discharge rate against CF were more distinctive for the stimulus onset than for the central portion. Power spectra of PST histograms had large response components near fiber characteristic frequencies for CFs up to 3-4 kHz, as well as low-frequency components for all fibers. The relative amplitudes of these components varied for the different stimuli. In general, the formant frequencies of the fricatives did not correspond with the largest response components, except for formants below about 3 kHz. Processing schemes based on fine time patterns of discharge that were effective for vowel stimuli generally failed to extract the formant frequencies of fricatives.  相似文献   

19.
The study measured listener sensitivity to increments in the inter-onset intervals (IOIs) of successive 20-ms 4000-Hz tone bursts in isochronous sequences. The stimulus sequences contained two-six tone bursts, separated equally by silent intervals, with tonal IOIs ranging from 25 to 100 ms. Difference limens (DLs) for increments of the tonal IOIs were measured to assess listener sensitivity to changes of sequence rate. Comparative DLs were also measured for increments of a single interval located within six-tone isochronous sequences with different tone rates. Listeners included younger normal-hearing adults and two groups of older adults with and without high-frequency sensorineural hearing loss. The results, expressed as Weber fractions (DL/IOI), revealed that discrimination improved as the sequence tone rate decreased and the number of tonal components increased. Discrimination of a single sequence interval also improved as the number of sequence components increased from two to six but only for brief intervals and fast sequence rates. Discrimination performance of the older listeners with and without hearing loss was equivalent and significantly poorer than that of the younger listeners. The discrimination results are examined and discussed within the context of multiple-look mechanisms and possible age-related differences in the sensory coding of signal onsets.  相似文献   

20.
Measures of auditory performance were compared for an experimental group who listened regularly to music via personal music players (PMP) and a control group who did not. Absolute thresholds were similar for the two groups for frequencies up to 2 kHz, but the experimental group had slightly but significantly higher thresholds at higher frequencies. Thresholds for the frequency discrimination of pure tones were measured for a sensation level (SL) of 20 dB and center frequencies of 0.25, 0.5, 1, 2, 3, 4, 5, 6, and 8 kHz. Thresholds were significantly higher (worse) for the experimental than for the control group for frequencies from 3 to 8 kHz, but not for lower frequencies. Thresholds for detecting sinusoidal amplitude modulation (AM) were measured for SLs of 10 and 20 dB, using four carrier frequencies 0.5, 3, 4, and 6 kHz, and three modulation frequencies 4, 16, and 50 Hz. Thresholds were significantly lower (better) for the experimental than for the control group for the 4- and 6-kHz carriers, but not for the other carriers. It is concluded that listening to music via PMP can have subtle effects on frequency discrimination and AM detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号