首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nascent product quantum state distributions have been measured for reactive, H + D2 → HD + D, and inelastic, H + D2 → D2? + H, collisions of H with D2, at collision energies of 0.98 eV, 1.1 eV, and 1.3 eV. These distributions are extracted from coherent anti-Stokes Raman scattering (CARS) spectra of HD and D2 (recorded under single-collision conditions) following laser photodissociation of HI to generate translationally hot H atoms in a D2/HI gas mixture. Variation of the photolysis wavelength allows selection of the H atom translational energy. These rotational and vibrational state distributions are compared with those obtained from quasiclassical trajectory calculations on an ab initio potential energy surface. The agreement between the calculated and measured distributions is extremely good. TheHD and D2 product quantum state distributions are well represented by simple linear surprisal functions, with large positive vibrational and rotational surprisal.  相似文献   

2.
Calculations on the D + HBr → DBr + H and D + HI → DI + H reactions are reported. A three-dimensional, quantum-dynamical approximation is used which involves applying the energy sudden approximation to the entrance channel hamiltonian and the centrifugal sudden approximation to the exit channel hamiltonian. Results of integral and differential cross sections, rate coefficients and rotational distributions are presented. Diatomics-in-molecules potential-energy surfaces have been used in the computations. The HBrH potential has been optimesed so that the calculated room-temperature rate coefficient agrees with experiment. This potential has a barrier height of 0.237 eV. Rate coefficient computations for the four reactions H′ + H″ Cl → - H′Cl + H″ (H′, H″ = H or D) are also reported. These results, for a LEPS surface, agree well with those obtained in quasiclassical trajectory and variational transition state theory calculations.  相似文献   

3.
The kinetics of the reactions OH + Br2 → HOBr + Br (1) and OD + Br2 → DOBr + Br (3) have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium using the discharge‐flow mass spectrometric method. The following Arrhenius expressions were obtained either from the kinetics of product formation (HOBr, DOBr) in excess of Br2 over OH and OD or from the kinetics of Br2 consumption in excess of OH and OD: k1 = (1.8 ± 0.3) × 10−11 exp [(235 ± 50)/T] and k3 = (1.9 ± 0.2) × 10−11 exp [(220 ± 25)/T] cm3 molecule−1 s−1. For the reaction channels of the title reactions: OH + Br2 → BrO + HBr and OD + Br2 → BrO + DBr, the upper limits of the branching ratios were found to be 0.03 and 0.02 at T = 320 K, respectively. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 698–704, 1999  相似文献   

4.
The mechanism of reaction Cl2+2HBr=2HCl+Br2 has been carefully investigated with density functional theory (DFT) at B3LYP/6-311G** level. A series of three-centred and four-centred transition states have been obtained. The activation energy (138.96 and 147.24 kJ/mol, respectively) of two bimolecular elementary reactions Cl2+HBr→HCl+BrCl and BrCl+HBr→HCl+Br2 is smaller than the dissociation energy of Cl2, HBr and BrCl, indicating that it is favorable for the title reaction occurring in the bimolecular form. The reaction has been applied to the chemical engineering process of recycling Br2 from HBr. Gaseous Cl2 directly reacts with HBr gas, which produces gaseous mixtures containing Br2, and liquid Br2 and HCl are obtained by cooling the mixtures and further separated by absorption with CCl4. The recovery percentage of Br2 is more than 96%, and the Cl2 remaining in liquid Br2 is less than 3.0%. The paper provides a good example of solving the difficult problem in chemical engineering with basic theory.  相似文献   

5.
By measurement of infrared chemiluminescence we have obtained for the branching ratio of the room temperature reaction H + Br2 (1), k*1/k1 = 0.015 ± 0.004 and for H + HBr (2), k*2/k2 ? 0.013. For H + Br2 → HBr(υ· ? 6) + Br (1), the detailed rate constant k* = 6) = 0.014 ± 0.003 relative to k· = 4) = 100.  相似文献   

6.
《Chemical physics letters》1985,122(3):196-200
The mechanism of reaction of atomic hydrogen with CH3Br has been examined by product analysis in a static system. In a vessel coated with NaOH to remove HBr, quantum yield close to unity are found for C2H6 formation. H + CH3Br → CH3 + HBr, 2CH3 → C2H6. The reaction scheme is modelled by assuming that surface loss is diffusion controlled. The step H + CH3Br → CH4 + Br accounts for less than 5% of the total reaction.  相似文献   

7.
The analysts of internal quantum state distributions of product molecules formed in molecular beam scattering studies of chemical reactions provides a sensitive test of reaction theories. The electrostatic quadrupole state selector can be used to measure directly the rotational state distribution of polar molecules. The method has the advantage over all others in that the rotational state distribution can be measured at a given arbitrary scattering angle and final velocity. The method has already been used to study the reaction Rb + Br2 → RbBr + Br and Rb + HBr → RbBr + H. It has also been used to characterize a Xe seeded C-F nozzle beam. The present paper describes in detail the apparatus used, us theory of operation, the methods for evaluating the experimental data and some results from the above mentioned experiments.  相似文献   

8.
The importance of reactive trajectories straying far from the minimum energy path is demonstrated for the bimolecular reaction H + HBr --> H2(v', j') + Br at 53 kcal/mol collision energy. Product quantum state distributions are measured and calculated using the quasi-classical trajectory technique, and the calculations indicate that highly internally excited H2 products result from indirect reactive trajectories with bent transition states. A general argument is made suggesting that reaction products with internal energy exceeding a kinematic constraint can, in general, be attributed to reactive collisions straying far from the minimum energy path.  相似文献   

9.
The small laser pulse gain method, based on photochemical Br and I lasers, is used to probe 2P3/2 and 2P1/2 states of iodine and bromine atoms in the reactions F + Br2 → BrF + Br (I), I(2P1/2) + Br2 → IBr + Br (II), and Br + IBr → Br2 + I (III). The results obtained are capable of formulating a conservation rule for the spin-orbit excited state.  相似文献   

10.
Reactions of CF3Br with H atoms and OH radicals have been studied at room temperature at 1–2 torr pressures in a discharge flow reactor coupled to an EPR spectrometer. The rate constant of the reaction H + CF3Br → CF3 + HBr (1) was found to be k1 = (3.27 ± 0.34) × 10?14 cm3/molec·sec. For the reaction of OH with CF3Br (8) an upper limit of 1 × 10?15 cm3/molec·sec was determined for k8. When H atoms were in excess compared to NO2, used to produce OH radicals, a noticeable reactivity of OH was observed as a result of the reaction OH + HBr → H2O + Br, HBr being produced from reaction (1).  相似文献   

11.
Born approximation computations are presented and discussed for the Cl + HI → I + HCl and F + H2 → H + HF reactions and their isotopic analogues. Most aspects of the role of reagent energy or the energy disposal in the products previously deduced from experiment or trajectory computations can be accounted for the Born approximation. The procedure used here neglects the interaction between non-bonded atoms. It does thereby provide a very simple computational scheme which requires as input only the spectroscopic constants of the reactants and products. In addition it offers simple qualitative interpretations of the trends in the results. The overall satisfactory agreement between the present results and past studies lends credibility to the basic propensity rule provided by the Born approximation: The most probable transitions are those that minimize the momentum transfer to the nuclei. The principle is discussed with special reference to exothermic (ET ? ET) and endothermic transitions.The computations for Cl + HI indicate a decline of the reaction cross section with increasing kinetic energy and a strong enhancement by HI rotational energy. The surprisal analysis confirms the absence of vibrational population inversion for endothermic transitions. For the F + H2 (and isotopic variants) reactions, the product-rotational state distribution extends nearly to the energy cut-off. The vibrational state distribution is somewhat different for para- and normal H2 and, in general, the collision outcome is very sensitive to the initial rotational state of H2 particularly at low translational energies. The HF/DF branching ratio is F + HD collisions is increasing with increase of the HD rotational state. The vibrational surprisal is essentially isotopically invariant.  相似文献   

12.
3-D classical trajectory calculations were performed using diabatic as well as adiabatic potential energy surfaces. Non-adiabatic transitions were allowed and localized at the avoided crossing of the two adiabatic surfaces. The transition probability was calculated according to the Landau—Zener formalism. The total cross sections for the reaction K + Br2 → KBr + Br were calculated and compared with experimental data. The total cross sections, calculated with the aid of adiabatic potential energy surfaces, were, contrary to those with diabatic surfaces, in very good agreement with the measured total reactive cross sections over the whole energy range of 0–4 eV.  相似文献   

13.
采用MP2和CCSD(T)方法对HXeBr分子的振动光谱进行了理论研究. 计算结果表明, 经非谐性和基质效应修正后的H—Xe伸缩振动、弯曲振动以及Xe—Br伸缩振动频率分别为1492, 509和174 cm-1, 与实验结果吻合得较好. 此外分别采用单参考组态的CCSD(T)方法和多参考组态耦合簇(MR-AQCC)方法研究了HXeBr分子的稳定性和离解途径. 研究结果表明, 离解途径HXeBr→Xe+HBr和HXeBr→H+Xe+Br的能垒分别为1.39和0.89 eV, 三体离解途径是HXeBr分子的主要离解途径.  相似文献   

14.
We consider experimental implications for the Mu + Cl2, H + Cl2, and D + Cl2 reactions of the extended London—Eyring—Polanyi—Sato (LEPS) potential energy surface derived from experimental data in paper I. In the present calculations, it is necessary to make additional implicit and explicit assumptions concerning the three-dimensional (3D) nature of the potential surface, since the inversion procedure of paper I yields information only on the collinear (1D) part of the surface. We have performed accurate 1D quantum calculations of reaction probabilities, which are then transformed into 3D by an information theoretic 1D → 3D transformation incorporating a constraint to allow for angular momentum transfer effects in light+heavy—heavy atom reactions. This procedure implicitly accounts for the 3D nature of the potential surface. The calculated vibrational and vibrotational product distributions are in good agreement with those determined in thermal chemiluminescence experiments. The Sato parameters for the 1D surface also define a full 3D surface. This is used as an approximation to the true surface, and its properties are explored in 3D quasiclassical trajectory calculations. Comparison is made for the H and D reactions with available chemiluminescence, molecular beam and kinetic experimental data for differential and total reaction cross sections, energy disposal, rate coefficients and Arrhenius parameters. Some kinetic isotope effects in the Mu, H, and D reactions are discussed using vibrationally adiabatic theory. Comparison is also made with results from other calculations in the literature for the H + Cl2 and D + Cl2 reactions.  相似文献   

15.
The mechanism of reaction CI2+2HBr=2HCI+Br2 has been carefully investigated with density functional theory (DFT) at B3LYP/6-311G** level. A series of three-centred and four-centred transition states have been obtained. The activation energy (138.96 and 147.24 kJ/mol, respectively) of two bimolecular elementary reactions CI2+HBr→HCI+BrCI and BrCI+HBr→HCI+Br2 is smaller than the dissociation energy of CI2, HBr and BrCI, indicating that it is favorable for the title reaction occurring in the bimolecular form. The reaction has been applied to the chemical engineering process of recycling Br2 from HBr. Gaseous CI2 directly reacts with HBr gas, which produces gaseous mixtures containing Br2, and liquid Br2 and HCI are obtained by cooling the mixtures and further separated by absorption with CCI4. The recovery percentage of Br2 is more than 96%, and the CI2 remaining in liquid Br2 is less than 3.0%. The paper provides a good example of solving the difficult problem in chemical engineering with basic theory.  相似文献   

16.
The reaction of SiBr4(g) with H2(g) in the temperature range 900–1143 K has been studied by a mass spectrometric method. Second and third law reaction enthalpies were obtained for SiBr4(g) + H2(g) = SiHBr3(g) + HBr(g), SiHBr3(g) + H2(g) = SiH2Br2(g) + HBr(g), and SiH2Br2(g) + H2(g) = SiH3Br(g) + HBr(g). From the heats of reaction, third-law ΔH£298 values of ?72.5 ± 1, ?43.2 ± 1.5 and ?15.3 ± 0.5 kcal/mole were obtained for SiHBr3(g), SiH2Br2(g), and SiH3Br(g), respectively.  相似文献   

17.
The rate constants for the reaction H + HBr → H2 + Br were measured between 217 and 383 K using pulsed laser photolysis of HBr and cw resonance fluorescence detection of H(2S). The temporal profiles of the product Br atoms were also monitored to obtain the rate constant at 298 K. The yield of Br from the reaction was determined to be unity. The rate coefficient as a function of temperature is given by the Arrhenius expression, k 1 = (2.96 ± 0.44) × 10?11 exp(?(460 ± 40)/T) cm3 molecule?1 s?1. The quoted errors are at the 95% confidence level and include estimated systematic errors. Our results are compared with those from previous direct measurements. © John Wiley & Sons, Inc.  相似文献   

18.
The potential energy surface of O(1D) + CH3CH2Br reaction has been studied using QCISD(T)/6‐311++G(d,p)//MP2/6‐311G(d,p) method. The calculations reveal an insertion‐elimination reaction mechanism of the title reaction. The insertion process has two possibilities: one is the O(1D) inserting into C? Br bond of CH3CH2Br producing one energy‐rich intermediate CH3CH2OBr and another is the O(1D) inserting into one of the C? H bonds of CH3CH2Br producing two energy‐rich intermediates, IM1 and IM2. The three intermediates subsequently decompose to various products. The calculations of the branching ratios of various products formed though the three intermediates have been carried out using RRKM theory at the collision energies of 0, 5, 10, 15, 20, 25, and 30 kcal/mol. CH3CH2O + Br are the main decomposition products of CH3CH2OBr. CH3COH + HBr and CH2CHOH + HBr are the main decomposition products for IM1; CH2CHOH + HBr are the main decomposition products for IM2. As IM1 is more stable and more likely to form than CH3CH2OBr and IM2, CH3COH + HBr and CH2CHOH + HBr are probably the main products of the O(1D) + CH3CH2Br reaction. Our computational results can give insight into reaction mechanism and provide probable explanations for future experiments. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
Quantum state-to-state dynamics for the H + HBr(υ(i) = 0, j(i) =0) reaction was studied on an accurate ab intio potential energy surface for the electronic ground state of BrH(2). Both the H + HBr → H(2) + Br abstraction reaction and the H' + HBr → H'Br + H exchange reaction were investigated up to a collision energy of 2.0 eV. It was found that the abstraction channel is dominant at lower collision energies, while the exchange channel becomes dominant at higher collision energies. The total integral cross section of the abstraction reaction at a collision energy of 1.6 eV was found to be 1.37 A?(2), which is larger than a recent quantum mechanical result (1.06 A?(2)) and still significantly smaller than the experimental value (3 ± 1 A?(2)). Meanwhile, similar to the previous theoretical study, our calculations also predicted much hotter product rotational state distributions than those from the experimental study. This suggests that further experimental investigations are highly desirable to elucidate the dynamic properties of the title reactions.  相似文献   

20.
Based on an FTIR-product study of the photolysis of mixtures containing Br2? CH3CHO and Br2? CH3CHO? HCHO in 700 torr of N2, the rate constant for the reaction Br + CH3CHO → HBr + CH3CO was determined to be 3.7 × 10?12 cm3 molecule?1 s?1. In addition, the selective photochemical generation of Br at λ > 400 nm in mixtures containing Br2? CH3CHO? 14NO2 (or 15NO2)? O2 was shown to serve as a quantitative preparation method for the corresponding nitrogen-isotope labeled CH3C(O)OONO2 (PAN). From the dark-decay rates of 15N-labeled PAN in large excess 14NO2, the rate constant for the unimolecular reaction CH3C(O)OO15NO2 → CH3C(O)OO + 15NO2 was measured to be 3.3 (±0.2) × 10?4 s?1 at 297 ± 0.5 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号