首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction of the aromatic distonic peroxyl radical cations N‐methyl pyridinium‐4‐peroxyl (PyrOO.+) and 4‐(N,N,N‐trimethyl ammonium)‐phenyl peroxyl (AnOO.+), with symmetrical dialkyl alkynes 10a – c was studied in the gas phase by mass spectrometry. PyrOO.+ and AnOO.+ were produced through reaction of the respective distonic aryl radical cations Pyr.+ and An.+ with oxygen, O2. For the reaction of Pyr.+ with O2 an absolute rate coefficient of k1=7.1×10?12 cm3 molecule?1 s?1 and a collision efficiency of 1.2 % was determined at 298 K. The strongly electrophilic PyrOO.+ reacts with 3‐hexyne and 4‐octyne with absolute rate coefficients of khexyne=1.5×10?10 cm3 molecule?1 s?1 and koctyne=2.8×10?10 cm3 molecule?1 s?1, respectively, at 298 K. The reaction of both PyrOO.+ and AnOO.+ proceeds by radical addition to the alkyne, whereas propargylic hydrogen abstraction was observed as a very minor pathway only in the reactions involving PyrOO.+. A major reaction pathway of the vinyl radicals 11 formed upon PyrOO.+ addition to the alkynes involves γ‐fragmentation of the peroxy O? O bond and formation of PyrO.+. The PyrO.+ is rapidly trapped by intermolecular hydrogen abstraction, presumably from a propargylic methylene group in the alkyne. The reaction of the less electrophilic AnOO.+ with alkynes is considerably slower and resulted in formation of AnO.+ as the only charged product. These findings suggest that electrophilic aromatic peroxyl radicals act as oxygen atom donors, which can be used to generate α‐oxo carbenes 13 (or isomeric species) from alkynes in a single step. Besides γ‐fragmentation, a number of competing unimolecular dissociative reactions also occur in vinyl radicals 11 . The potential energy diagrams of these reactions were explored with density functional theory and ab initio methods, which enabled identification of the chemical structures of the most important products.  相似文献   

2.
Metalloradical species [Co2Fv(CO)4].+ ( 1 .+, Fv=fulvalenediyl) and [Co2Cp2(CO)4].+ ( 2 .+, Cp=η5‐C5H5), formed by one‐electron oxidations of piano‐stool cobalt carbonyl complexes, can be stabilized with weakly coordinating polyfluoroaluminate anions in the solid state. They feature a supported and an unsupported (i.e. unbridged) cobalt–cobalt three‐electron σ bond, respectively, each with a formal bond order of 0.5 (hemi‐bond). When Cp is replaced by bulkier Cp* (Cp*=η5‐C5Me5), an interchange between an unsupported radical [Co2Cp*2(CO)4].+ (anti‐ 3 .+) and a supported radical [Co2Cp*2(μ‐CO)2(CO)2].+ (trans‐ 3 .+) is observed in solution, which cocrystallize and exist in the crystal phase. 2 .+ and anti‐ 3 .+ are the first stable thus isolable examples that feature an unsupported metal–metal hemi‐bond, and the coexistence of anti‐ 3 .+ and trans‐ 3 .+ in one crystal is unprecedented in the field of dinuclear metalloradical chemistry. The work suggests that more stable metalloradicals of metal–metal hemi‐bonds may be accessible by using metal carbonyls together with large and weakly coordinating polyfluoroaluminate anions.  相似文献   

3.
Poly-N-vinylcarbazole and its monomeric analog, i.e., N-ethylcarbazole, act as donors in charge transfer complexes with such electron acceptors as iodine, tetracyanoethylene, and tetracyanoquinodimethane. Poly-N-vinylcarbazole and N-ethylcarbazole are also capable of accepting electrons from an alkali metal such as sodium. A study of the spectral properties of both types of complexes showed that the monomer can both accept and donate electrons to a greater extent than the corresponding unit segment of the polymer chain. Equilibrium constants are presented for both cases, and estimates of the ionization potential of N-ethylcarbazole and related compounds are made from the characteristic charge transfer frequencies. Good agreement between these values and those calculated from molecular orbital theory is outlined.  相似文献   

4.
The tricyclic azoalkanes, (1α,4α,4aα,7aα)‐4,4a,5,6,7,7a‐hexahydro‐1,4,8,8‐tetramethyl‐1,4‐methano‐1H‐cyclopenta[d]pyridazine ( 1c ), (1α,4α,4aα,6aα)‐4,4a,5,6,6a‐pentahydro‐1,4,7,7‐tetramethyl‐1,4‐methano‐1H‐cyclobuta[d]pyridazine ( 1d ), (1α,4α,4aα,6aα)‐4,4a,6a‐trihydro‐1,4,7,7‐tetramethyl‐1,4‐methano‐1H‐cyclobuta[d]pyridazine ( 1e ), and (1α,4α,4aα,5aα)‐4,4a,5,5a‐tetrahydro‐1,4,6,6‐tetramethyl‐1,4‐methano‐1H‐cyclopropa[d]pyridazine ( 1f ), as well as the corresponding housanes, the 2,3,3,4‐tetramethyl‐substituted tricyclo[3.3.0.02,4]octane ( 2c ), tricyclo[3.2.0.02,4]heptane ( 2d ), and tricyclo[3.2.0.02,4]hept‐6‐ene ( 2e ), were subjected to γ‐irradiation in Freon matrices. The reaction products were identified with the use of ESR and, in part, ENDOR spectroscopy. As expected, the strain on the C‐framework increases on going from the cyclopentane‐annelated azoalkanes and housanes ( 1c and 2c ) to those annelated by cyclobutane ( 1d and 2d ), by cyclobutene ( 1e and 2e ), and by cyclopropane ( 1f ). Accordingly, the products obtained from 1c and 2c in all three Freons used, CFCl3, CF3CCl3, and CF2ClCFCl2, were the radical cations 3c .+ and 2c .+ of 2,3,4,4‐tetramethylbicyclo[3.3.0]oct‐2‐ene and 2,3,3,4‐tetramethylbicyclo[3.3.0]octane‐2,4‐diyl, respectively. In CFCl3 and CF3CCl3 matrices, 1d and 2d yielded analogous products, namely the radical cations 3d .+ and 2d .+ of 2,3,4,4‐tetramethylbicyclo[3.2.0]hept‐2‐ene and 2,3,3,4‐tetramethylbicyclo[3.2.0]heptane‐2,4‐diyl. The radical cations 3c .+ and 3d .+ and 2c .+ and 2d .+ correspond to their non‐annelated counterparts 3a .+ and 3b .+, and 2a .+ and 2b .+ generated previously under the same conditions from 2,3‐diazabicyclo[2.2.1]hept‐2‐ene ( 1a ) and bicyclo[2.1.0]pentane ( 2a ), as well as from their 1,4‐dimethyl derivatives ( 1b and 2b ). However, in a CF2ClCFCl2 matrix, both 1d and 2d gave the radical cation 4d .+ of 2,3,3,4‐tetramethylcyclohepta‐1,4‐diene. Starting from 1e and 2e , the radical cations 4e .+ and 4e′ .+ of the isomeric 1,2,7,7‐ and 1,6,7,7‐tetramethylcyclohepta‐1,3,5‐trienes appeared as the corresponding products, while 1f was converted into the radical cation 4f .+ of 1,5,6,6‐tetramethylcyclohexa‐1,4‐diene which readily lost a proton to yield the corresponding cyclohexadienyl radical 4f .. Reaction mechanisms leading to the pertinent radical cations are discussed.  相似文献   

5.
Salts of N-nitro-O-(4-nitrophenyl)hydroxylamine were synthesized by a new method of oxidative nitration, involving the reaction of O-(4-nitrophenyl)hydroxylamine with KNO2 or NaNO2 in the presence of PhI(OAc)2 or PhIO as oxidants. When using Na15NO2, the samples containing the nitro group labeled with the 15N isotope were obtained. Acidification of the appropriate salt gave N-nitro-O-(4-nitrophenyl)hydroxylamine. It is the first N-nitrohydroxylamine isolated in the H-form. Its thermal stability was investigated and the probable mechanism of decomposition was suggested. From a comparison of the 14N and 15N NMR spectra of N-nitro-O-(4-nitrophenyl)hydroxylamine with those of its O- and N-methylated derivatives, its equilibrium with the aci-form (N=NOOH) was inferred.  相似文献   

6.
Preparation and isolation of dibenzodioxin cation radical perchlorate ( 2 ) by oxidation of dibenzodioxin in ethyl acetate-lithium perchlorate at a platinum anode has been achieved. Reasonably pure 2 in amounts of 150–200 mg. were obtained reliably and reproducibly. Reaction of 2 with both nitrite and nitrate ions gave 2-nitrodibenzodioxin ( 3 ). Reaction of 2 with pyridine gave N-(2-dibenzodioxinyl)pyridinium perchlorate ( 4 ). Reaction with water gave, as anticipated, the stoichiometric amount of dibenzodioxin. Reaction with ammonia, propylamine, t-butylamine, and cyanide ion also gave dibenzodioxin with no evidence that nucleophilic substitution had occurred. It is believed that the formation of 3 and 4 represent the first examples of nucleophilic substitution into dibenzodioxin via its cation radical.  相似文献   

7.
Reactions of 2,2-dimethylaziridine with benzohydroximoyl chlorides [ArC(Cl)?NOH] give aziridinylbenzaldoximes 1 . It has been found that the aziridine ring in these compounds undergoes ring opening in hydrogen chloride-dioxane solution to give (Z)-N-hydroxy-N′-(2-chloro-2-methylpropyl)benzenecarboximidamides [ArC(NHCH2CR1R2Cl)?NOH, 4 ]. Treatment of 1 with hydrochloric acid followed by neutralization with aqueous sodium hydroxide gave 6,6-dimethyl-3-aryl-1,2,4-oxadiazines 2. Reaction of 4 with sodium hydride in dioxane gave 5-isopropyl-3-aryl-4,5-dihydro-1,2,4-oxadiazoles 5. Reaction of the 4,5-dihydro-1,2,4-oxadiazoles 5 with N-chlorosuccinimide gave the heteroaromatic 1,2,4-oxadiazoles 6 . It is suggested that reactions of 4 with sodium hydride in dioxane solution involve the conjugate base of 4 which undergoes a 1,2-hydride shift that is concerted with loss of chloride ion. In aqueous sodium hydroxide solution it is suggested that the conjugate base of 4 undergoes ionization of the chlorine atom followed by nucleophilic attack by the oximate anion.  相似文献   

8.
3-Acetyl-6-(o-methyl benzoyl)-N-ethylcarbazole was prepared through successive o-methyl benzoylation and acetylation of N-ethylcarbazole in one pot. The overall yield was 85.6% and the structure was confirmed by 1H-NMR and 13C-NMR. A preliminary investigation had also been carried out on the mechanism of the o-methyl benzoylation of N-ethylcarbazole.  相似文献   

9.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

10.
Reaction of thianthrene cation radical perchlorate (Th.+ClO4?) with 1,4-diphenylazomethane (DPAM) in MeCN and EtCN led to the formation of 1,2,4-triazoles. Triazoles formation is attributed to oxidative cycloaddition of benzaldehyde benzylhydrazone, the tautomer of DPAM, to the solvent nitriles. In confirmation, analogous cycloadditions were achieved by reaction of Th.+ClO4? with some benzaldehyde phenylhydrazones in the same solvents.  相似文献   

11.
Thermal transformations of vinylcyclopropane radical cations (VCP.+) in X-ray-irradiated frozen Freon matrices (CFCl2CF2Cl and CFCl3) were studied by ESR; radical processes involving VCP.+ in solid VCP were simulated.Gauche- andanti-VCP .+ were found to be the primary radical cations, however, the former, unlike the latter, is stable only under gas-phase conditions. The thermodynamic equilibrium betweenanti-VCP.+ and its less stable distonic form,dist(90,0)-C 5H8 .+, is established in frozen Freon matrices and the VCP host matrix; the structure of dist(90,0)****-C 5H8 .+ is stabilized by a molecule ofanti-VCP. In CFC3, along with dist(90,0)-C5H8 .+,-dimeric resonance [anti-VCP]2 .+ complex was detected. A general scheme of the transformations of VCP.+ in the solid phase has been proposed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 11–21, January, 1994.  相似文献   

12.
Mechanistic studies with 5-ethyl-3-methyllumiflavinium (Fl+) perchlorate, a biomimetic model for flavoenzyme monoamine oxidase B (MAO-B) catalysis, and the tertiary, allyl amine 1-methyl-4-(1-methyl-1 H-pyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP) reveal that proton-coupled electron transfer (PCET) may be an important pathway for MAO catalysis. The first step involves a single-electron transfer (SET) leading to the free radicals Fl. and MMTP., the latter produced by deprotonation of the initially formed and highly acidic MMTP.+. Molecular oxygen (O2) is found to play a hitherto unrecognized role in the early steps of the oxidation. MMTP and several structurally similar tertiary amines are the only tertiary amines oxidized by MAO, and their structural/electronic properties provide the key to understanding this behavior. A general hypothesis about the role of SET in MAO catalysis, and the recognition that PCET occurs with appropriately substituted substrates is presented.  相似文献   

13.
A sensitive extractive spectrophotometric method for the determination of nitrogen dioxide in air and nitrite and nitrate in water, soil and blood serum is described. Nitrogen dioxide in air is fixed as nitrite in a suitable trapping solution. The method is based on the diazo coupling reaction betweenp-nitroaniline andN-(1-naphthyl)ethylenediamme dihydrochloride [NEDA]. The azo dye formed under aqueous conditions is extracted with isobutyl methyl ketone [IBMK]. The system obeys Beer's law over the range 0–3 g of nitrite at 545 nm and the colour is stable for 3h. The molar absorptivity of the colour system is 5.7 × 104 L mol–1 cm–1. The relative standard deviation is 1.3% for ten determinations at 2 ug of nitrite. Nitrate is determined as nitrite after reduction on a cadmium column. Negative interferences from SO2, H2S, Cu2+ and Cr3+ and positive interference from Fe2+ and Fe3+ can be simply masked.  相似文献   

14.
Ultrafine Ru nanoparticles (RuNPs) supported on nitrogen-doped layered double hydroxide (Ru/LDH) were in situ prepared by nitrogen glow discharge plasma (nGDP) without adding any chemical reducing agents or stabilizers. The as-synthesized Ru/LDH catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. During treatment with nGDP, the reduction of Ru3+ and nitrogen doping were carried out simultaneously. The resulting RuNPs has a narrow particle size distribution of 1.41–2.61 nm, an ultrafine average particle size of 1.86 nm, and were uniformly dispersed on nitrogen-doped LDH. The complexation of RuNPs and O/N-containing functional groups on LDH improve the catalytic activity and stability of Ru/LDH. The catalyst exhibited excellent properties for the hydrogenation reaction of N-ethylcarbazole (NEC). The conversion of NEC and the selectivity of 12H-NEC were 100% and 99.06% for 1 hr at 120°C and 6 MPa H2, respectively. The mass hydrogen storage capacity was 5.78 wt%. The apparent activation energy was 35.78 kJ/mol.  相似文献   

15.
Sterically unprotected thiophene/phenylene co‐oligomer radical cation salts BPnT.+[Al(ORF)4]? (ORF=OC(CF3)3, n=1–3) have been successfully synthesized. These newly synthesized salts have been characterized by UV/Vis‐NIR absorption and EPR spectroscopy, and single‐crystal X‐ray diffraction analysis. Their conductivity increases with chain length. The formed meso‐helical stacking by cross‐overlapping radical cations of BP2T.+ is distinct from previously reported face‐to‐face overlaps of sterically protected (co‐)oligomer radical cations.  相似文献   

16.
The results of Spectroelectrochemical studies in homogenous solutions have shown that below the cmc value the cation radical of N-tetradecyl-N '-ethyl viologen (TDEV) dimerizes. The TDEV and tetradecyltriethyl-ammonium bromide (TDEA) micelles were found to stabilize the cation radical TDEV.+ and increase the rate constant for the reaction TDEV+TDEV2+ = TDEV.+ as compared with the results obtained at concentrations below cmc.Based on the spectrophotochemical measurements for TDEV it was found that the quantum yield (Φ) of photoreduction in micellar evironment of TDEA was twice as large as Φ for reactions performed in homogenous solution. Moreover, in micellar solutions photoreduction of TDEV leads to a cation radical of reduced TDEV (TDEV+), but in homogenous solution to the dimer of TDEV [TDEV]2. Therefore, the process of dimerization of TDEV.+ cation radical is inhibited by micellar catalysis.  相似文献   

17.
We show that the radical cations of adamantane (C10H16.+, 1 H.+) and perdeuteroadamantane (C10D16.+, 1 D.+) are stable species in the gas phase. The radical cation of adamantylideneadamantane (C20H28.+, 2 H.+) is also stable (as in solution). By using the natural 13C abundances of the ions, we determine the rate constants for the reversible isergonic single‐electron transfer (SET) processes involving the dyads 1 H.+/ 1 H, 1 D.+/ 1 D and 2 H.+/ 2 H. Rate constants for the reaction 1 H.++ 1 D? 1 H+ 1 D.+ are also determined and Marcus’ cross‐term equation is shown to hold in this case. The rate constants for the isergonic processes are extremely high, practically collision‐controlled. Ab initio computations of the electronic coupling (HDA) and the reorganization energy (λ) allow rationalization of the mechanism of the process and give insights into the possible role of intermediate complexes in the reaction mechanism.  相似文献   

18.
To activate electronic and optical functions of the redox-active metal–organic framework, (Me2NH2)[InIII(TTFTB)]⋅0.7 C2H5OH⋅DMF (Me2NH2@ 1 , TTFTB=tetrathiafulvalene-tetrabenzoate, DMF=N,N-dimethylformamide), has been exchanged by tetrathiafulvalenium (TTF.+) and N,N′-dimethyl-4,4′-bipyridinium (MV2+). These cations provide electron carriers and photosensitivity. The exchange retains the crystallinity allowing single-crystal to single-crystal post-synthetic transformation to TTF@ 1 and MV@ 1 . Both TTF.+ and MV2+ enhance the electrical conductivity by a factor of 102 and the visible light induced photocurrent by 4 and 28 times, respectively. EPR evidences synergetic effect involving charge transfer between the framework redox-active TTFTB bridges and MV2+. The results demonstrate that functionalization of MOF by cation exchange without perturbing the crystallinity extends possibilities to achieve switchable materials.  相似文献   

19.
The thermal reduction of N2O by CO mediated by the metal‐free cluster cations [Si2Ox].+ (x =2–5) has been examined in the gas phase using Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry in conjunction with quantum chemical calculations. Three successive oxidation/reduction steps occur starting from [Si2O2].+ and N2O to form eventually [Si2O5].+; the latter as well as the intermediate oxide cluster ions react sequentially with CO molecules to regenerate [Si2O2].+. Thus, full catalytic cycles occur at ambient conditions in the gas phase. Mechanistic aspects of these sequential redox processes have been addressed to reveal the electronic origins of these unparalleled reactions.  相似文献   

20.
Thermal trasfomations of vinylcyclopropane (VCP) radical cations (RC) in X-ray irradiated frozen Freon matrices, CFCl2CF2Cl and CFCl3, were studed by ESR. Radical processes involving VCP.+ in very rarefied and moderately thickened gaseous VCP were simulated. Monomolecular cleavage of the cyclopropane ring ofgauche-VCP.+ (1) occurs to give the more thermally stable distonic radical cationdist(0.90)-C5H8 .+ (3). As the density of VCP increases RC3 adds at the double bond ofanti-VCP to give the distonic RC,.CH2CH2CHCH(CH2)3CHCHCH2 + (5). Under the same conditions, the less thermally stableanti-VCP.+(2) undergoes monomolecular isomerization into RC1 or reacts withanti-VCP with the rearrangement (as in the condensed phase) to give its distonic form,dist(90.0)-C5H8 .+ (4). The MNDO-UHF method was adapted for quantum-chemical analysis of the constants of isotropic hyperfine coupling with1H and13C nuclei in neutral and charged hydrocabon radicals, since the standard version of this method inadequately reproduces the structural parameters of low-symmetry (C 1,C s) paramagnetic species. A quantum-chemical analysis of the radiospectroscopic information and of the stereoelectronic control of thermal transformations of conformers of RC1 and2 into their structurally nonequivalent distonic forms3 and4, respectively, was carried out.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 212–235, February, 1995.This work was carried out with the financial support of the Russian Foundation for Basic Research (Project No. 93-03-04075).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号