首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The proton NMR spectral analysis of eight different 1,3,2-dithiaphospholanes with various groups attached to the phosphorus atom has been performed. The AA′BB′X (X phosphorus atom) system shows that the two 3J(P? S? C? H) coupling constants have a small magnitude and opposite signs. Using the 3J(HH) values, the torsion about the C4—C5 bond has been evaluated. The conformational requirements in the two isomers of the 2 phenyl-4-methyl-1,3,2-dithiaphospholane are also discussed.  相似文献   

2.
The vicinal 3Jaa and 3Jee spin-spin coupling constants of a number of deuterated trans-1,2-disubstituted cyclohexenes and the ΔH and ΔS values of the conformational equilibria of these compounds have been determined by computer optimisation of the 3J(HH) = f(T) function. Compounds with —CF3 and CCl3 substituents were shown to have an enhanced proportion of the diaxial conformer.  相似文献   

3.
It is shown that sterically unperturbed vicinal HH coupling constants in planar 7-membered π-systems correlate linearly with the HMO π-bond order: 3J(HH) = 20.91Pμ,ν–3.85 (r.m.s. error 0.26 Hz, correlation coefficient =0.988). Systematic deviations from this relationship which most probably originate from valence angle changes are found for fused π-systems containing rings of different size. Model calculations using the CNDO/2 method as well as finite perturbation theory and INDO wave functions support the experimental findings. An improvement of existing 3J(HH)? Pμ,ν correlations for planar 6-membered rings is possible if CNDO/2 π-bond orders are used instead of HMO or PPP-SCF data.  相似文献   

4.
The analysis of the ABKX spectra of thirteen compounds of the series RC(H-K)(F-X)C(H-A)(H-B)X gave the four vicinal proton-proton and fluorine-proton coupling constants. These coupling constants of conformationally mobile structures were used (i) to calculate the populations of the rotational states of the ? CHF? CH2? bond, (ii) to calculate the vicinal trans proton-proton J(HH)t and gauche and trans fluorine-proton coupling constants J(FH)g and J(FH)t and (iii) to give the unambiguous assignment of protons H-A and H-B. The dependence of the gauche and trans coupling constants with substituent electronegativity is explored. The results extend known correlations towards smaller electronegativity values. More quantitatively, the results and those in the literature, excluding those where deformations of torsional or bond angles occur, give a good fit of the data: a linear fit for J(HH)t = 15.0-0.77 Σ(ΔE), an exponential fit for J(FH)g = 15.35 exp [-0.266 Σ (ΔE)] and a linear fit for J(FH)t = 65.75 - 7.52 Σ (ΔE), where Σ (ΔE) is the sum of the electronegativity difference between hydrogen and the six atoms or groups on the CH? CF fragment.  相似文献   

5.
Carbon-13 chemical shifts and 2J(POC), 3J(POCC), 2J(PNC) and 3J(PNC) coupling constants of 30 compounds containing the amine moiety, with the general formula Y2PNRR' (Y ? C6H5, CH3O, CH3CH2O, CH2O; Y2 ? 1,2-dioxybenzene) have been determined. J(PNC) values have been used to explain the preferred conformation around the P? N bond. A comparison between 2J(PNC) and 2J(PNH) was accomplished.  相似文献   

6.
Signed values of all intra‐ring 2,3,4J(C,C) couplings in nine monosubstituted benzenes (C6H5‐X where X = F, Cl, Br, CH3, OCH3, Si(CH3)3, C ≡ N, NO, NO2) are experimentally determined as well as nine couplings to substituent carbons. It is confirmed that while all the vicinal intra‐ring 3J(C,C) are positive and all geminal 2J(C2,C4) are negative, both signs are found for geminal 2J(C1,C3) couplings. All the determined signs agree with those already predicted by theoretical calculations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
NMR parameters are determined and identified for the four stereoisomers of 3,4-dimethyl methoxycarbonylcyclohexane (d3-2,2,3,4,5,5), the two stereoisomers of 2-methyl methoxycarbonylcyclohexane (d5-2,3,4,5,5) and 3-methyl 4-X cyclohexene (d3-3,6,6) (X = COOCH3, CH2OH, CH2Cl). For the axial COOCH3 substituted cyclohexane, the vicinal coupling constants are in agreement with the ring deformation. Different conformational equilibria are estimated and discussed, especially in relation to the inequality of gauche interactions between two cis vicinal substituents.  相似文献   

8.
The 1H NMR spectra of a series of cis and trans-3R,4 X-cyclohexanones (-2,2,6,6-d4) are analysed. By comparison of their 3J coupling constants with those of cyclohexane homologues we obtain information about the chair–chair equilibrium constants for R = CH3, X = CN, the chair structure of cis isomers with an equatorial t-butyl group, and a conformational heterogeneity with trans (CH3)3C and CN groups. This latter situation is analysed by means of a simplified but controlled Karplus relationship, on the basis of a mixture of two conformers; this involves a diequatorial chair and a boat form with a dihedral angle Φ34 of about ?6°.  相似文献   

9.
Vicinal 13C, H coupling constants 3J(CO, H) for butenedioic acids and 3J(CH3, H) for 3-pentene-2-ones have been determined and are correlated with the configuration of the corresponding C?C double bond. For both types the relationship 3J(CH) trans > 3J(CH)cis holds; in the case of the CH3, H couplings, however, the 3J(CH3, H) trans values are reduced because of steric reasons, so that configurational assignments seem possible only when both isomers are present. Additionally, the coupling constants 3J(COC H3,H ) and the chemical shifts δ have been evaluated for the pentenones and it is shown that these parameters give information about the predominating conformation of α, β-unsaturated methyl ketones.  相似文献   

10.
The long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC) experiment is the experiment of choice for visualizing heteronuclear long-range coupling interactions nJCH across 4–6-bonds and is experimentally superior to the decoupled heteronuclear multiple-bond correlation (D-HMBC) experiment. Yet, the exact reasons have not been fully understood and established. On the basis of our recent investigation of the nonrefocused variants LR-HSQC and HMBC, we have extended a JHH′-dedicated investigation to the D-HMBC and LR-HSQMBC experiments. Unlike the nonrefocused variants, the influence of homonuclear couplings JHH′ on the intensity of long-range nJCH cross-peaks is not easily predictable and may be summarized as follows: (a) irrespective of the magnitude and number of JHH′ interactions long-range nJCH cross-peaks are more intense in D-HMBC spectra as long as the evolution delay Δ is not too large, because in contrast to LR-HSQMBC no JHH′-caused intensity zeroes will occur. (b) If JHH′ is small and Δ large, the intensity of cross peaks in D-HMBC spectra may be weakened or may even vanish at Δ = (0.25+0.5k)/JHH′, whereas for the LR-HSQMBC this unwanted effect occurs at Δ = k + 0.5/JHH′. Consequently, when Δ is adjusted to visualize weak nJCH long-range correlations, our findings corroborate that there are potentially more cross-peaks expected to show up in a LR-HSQMBC spectrum compared with a D-HMBC spectrum. This has been indeed noticed experimentally, even though the intensity of a many long-range nJCH cross-peaks may still be higher in the spectra of the D-HMBC experiment correspondingly adjusted for detecting weak nJCH correlations.  相似文献   

11.
All J(P? H) and J(P? C) values, including signs, have been obtained in acetylenic and propynylic phosphorus derivatives, R2P(X)? C?C? H and R2P(X)? C?C? CH3 (X ? oxygen, lone pair and R ? C6H5, N(CH3)2, OC2H5, N(C6H5)2, Cl) from 1H and 13C NMR spectra. In PIV derivatives the following signs are obtained: 1J(P? C)+, 2J(P? C)+, 3J(P? C)+, 3J(P? H)+, 4J(P? H)? . Linear relations are observed between 1J(P? C), 2J(P? C) and 3J(P? C) versus 3J(P? H), indicating that these coupling constants are mainly dependent on the Fermi contact term, though the other terms of the Ramsey theory do not seem to be negligible for 1J(P? C) and 2J(P? C). In PIII derivatives these signs are: 1J(P? C)- and +, 2J(P? C)+, 3J(P? C)-, 3J(P? H)-, 4J(P? H)+. Only 3J(P? C) and 3J(P? H) reflect a small contribution of the Fermi contact term while in 1J(P? C) and 2J(P? C) this contribution seems to be negligible relative to the orbital and/or spin dipolar coupling mechanisms.  相似文献   

12.
The vicinal 3J(C H3C?CH ) coupling constants were determined for a number of propylene derivatives and compared with the 3J(H C?CH ) couplings of the corresponding ethylenes. A linear regression analysis yielded the correlation 3J(CH) = 0.46 ×3 J(HH)+1.58 Hz, the correlation coefficient being 0.956.  相似文献   

13.
From a carbon magnetic resonance study of several alkylcobaloximes RCo(DMG)2B (DMG = dimethylglyoximate monoanion), it was possible to estimate the α, β and γ effects of the Co(DMG)2B group on the chemical shifts of the carbon atoms of various alkyl groups R. The chemical shifts of the carbon atoms belonging to the equatorial ligands and to the axial base B are not significantly affected by structural modification of the R groups. Values of δ in benzylcobaloximes XC6H4CH2Co(DMG)2B agree with a donor effect of the ? CH2Co(DMG)2B radical. Values of 1J(13C? H) coupling constants, measured in 13C enriched methylcobaloximes, do not vary appreciably when B is changed (J(13C? H) = 137 ± 1 Hz) and are close to the value obtained for methylcobalamine.  相似文献   

14.
The NMR spectra of monochloro-, monobromo- and monofluoroacetone (CH3? CO? CH2X with X = Cl, Br, F) oriented in a nematic phase have been measured and the direct dipolar coupling constants determined. The barrier to internal rotation for the CH2F group has been studied for fluorine compound using various hypotheses. The best agreement with IR data has been obtained using the potential equation V(θ) = Σn Vn × (1 – cos nθ)/2 and a Boltzmann distribution of the CH2F group (V1 = 250 ± 50 cal.mol?1, V2 = 1650 ± 100 cal.mol?1, V3 = ?1000 ± 100 cal.mol?1).  相似文献   

15.
13C chemical shifts and 31P? 13C spin–spin coupling constants are reported for 10 alkyl-, 20 benzyl- and 3 (naphthylmethyl)-phosphonates. While in saturated aliphatic chains P–C couplings over more than four bonds cannot be resolved, couplings over up to seven bonds are observed in the benzyl type systems. Conformational and substituent effects on J(PC) are studied and discussed. nJ(PF) (n = 4, 5, 6) are reported for the isomeric (fluorobenzyl)phosphonates and nJ(PP) (n = 5, 6, 7) were obtained from the 13C satellites in the 31P n.m.r. spectra of the isomeric diphosphonates, C6H4[CH2P(O)(OEt)2]2. Comparison of those 13C absorptions of the latter, which represent the X parts of ABX or AA′X spin systems, with the spectra of the corresponding (methylbenzyl)phosphonates, CH3C6H4CH2P(O)(OEt)2, yielded the relative signs of nJ(PC) (n = 2–6).  相似文献   

16.
The PMR spectra of six primary aziridinyl carbinols are studied over a temperature range of ?30°C to +100°C. Nitrogen configuration is determined. When the inversion process is effective, kinetic parameters are evaluated. Rotational isomerism about the ‘ring? CH2OH’ bond is studied from vicinal coupling constants associated with the two diastereotopic protons on the ? CH2OH group. From the J(HOCH) coupling constant (in CCL4) rotamer populations of the hydroxyl group are determined in some cases and the overall conformational distribution can be established.  相似文献   

17.
The two complexes of formula [Cu2(CuL)2(μ‐N3)4] · 2CH3OH ( 1 ) and [Cu2(NiL)2(μ‐N3)4] · 2CH3OH ( 2 ) (CuL and NiL, H2L = 2,3‐dioxo‐5,6,14,15‐dibenzo‐1,4,8,12‐tetraazacyclo‐pentadeca‐7,13‐dien), were synthesized and structurally determined. The magnetic susceptibility data of 1 and 2 were analyzed. For complex 1 , magnetic measurements show alternating ferromagnetic and antiferromagnetic exchange couplings J1 = 23.67 cm–1, J2 = –189.11 cm–1, zJ’ = –0.62 cm–1. For complex 2 , the doubly bridged asymmetric EO promotes a ferromagnetic interaction between CuII and CuII ions(J = 40.764 cm–1).  相似文献   

18.
The conformational isomers endo‐ and exo‐[Mo{η3‐C3H4(CH3)}(η2‐pyS)(CO)(η2‐diphos)] (diphos: dppm = {bis(diphenylphosphino)methane}, 2 ; dppe = {1,2‐bis(diphenylphosphino)ethane}, 3 ) are prepared by reacting the double‐bridged pyridine‐2‐thionate (pyS) complex [Mo{η3‐C3H4(CH3)}(CO)2]212:μ‐pyS)2, 1 with diphos in refluxing acetonitrile. Stereoselectivity of the methallyl, C3H4(CH3), ligand improves the formation of the exo‐conformation of 2 and 3 . Orientations and spectroscopy of these complexes are discussed.  相似文献   

19.
Four cyano‐bridged 1D bimetallic polymers have been prepared by using the paramagnetic building block trans‐[Ru(acac)2(CN)2]? (Hacac=acetylacetone): {[{Ni(tren)}{Ru(acac)2(CN)2}][ClO4]?CH3OH}n ( 1 ) (tren=tris(2‐aminoethyl)amine), {[{Ni(cyclen)}{Ru(acac)2(CN)2}][ClO4]? CH3OH}n ( 2 ) (cyclen=1,4,7,10‐tetraazacyclododecane), {[{Fe(salen)}{Ru(acac)2(CN)2}]}n ( 3 ) (salen2?=N,N′‐bis(salicylidene)‐o‐ethyldiamine dianion) and [{Mn(5,5′‐Me2salen)}2{Ru(acac)2(CN)2}][Ru(acac)2(CN)2]? 2 CH3OH ( 4 ) (5,5′‐Me2salen=N,N′‐bis(5,5′‐dimethylsalicylidene)‐o‐ethylenediimine). Compounds 1 and 2 are 1D, zigzagged NiRu chains that exhibit ferromagnetic coupling between NiII and RuIII ions through cyano bridges with J=+1.92 cm?1, z J′=?1.37 cm?1, g=2.20 for 1 and J=+0.85 cm?1, z J′=?0.16 cm?1, g=2.24 for 2 . Compound 3 has a 1D linear chain structure that exhibits intrachain ferromagnetic coupling (J=+0.62 cm?1, z J′=?0.09 cm?1, g=2.08), but antiferromagnetic coupling occurs between FeRu chains, leading to metamagnetic behavior with TN=2.6 K. In compound 4 , two MnIII ions are coordinated to trans‐[Ru(acac)2(CN)2]? to form trinuclear Mn2Ru units, which are linked together by π–π stacking and weak Mn???O* interactions to form a 1D chain. Compound 4 shows slow magnetic relaxation below 3.0 K with ?=0.25, characteristic of superparamagnetic behavior. The MnIII???RuIII coupling constant (through cyano bridges) and the MnIII???MnIII coupling constant (between the trimers) are +0.87 and +0.24 cm?1, respectively. Compound 4 is a novel single‐chain magnet built from Mn2Ru trimers through noncovalent interactions. Density functional theory (DFT) combined with the broken symmetry state method was used to calculate the molecular magnetic orbitals and the magnetic exchange interactions between RuIII and M (M=NiII, FeIII, and MnIII) ions. To explain the somewhat unexpected ferromagnetic coupling between low‐spin RuIII and high‐spin FeIII and MnIII ions in compounds 3 and 4 , respectively, it is proposed that apart from the relative symmetries, the relative energies of the magnetic orbitals may also be important in determining the overall magnetic coupling in these bimetallic assemblies.  相似文献   

20.
Proton–proton 3J, 4J and 5J NMR coupling constants have been calculated for cyclohexane and monosubstituted cyclohexane conformers (substitiuents: Li, CH3, OH, F) by the two methods mentioned. Comparing the two methods on the basis of group theory, we show the necessity to use the second. The results from this method are compared with those of the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号