首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibrium constants for bromine hydrolysis, K(1) = [HOBr][H(+)][Br(-)]/[Br(2)(aq)], are determined as a function of ionic strength (&mgr;) at 25.0 degrees C and as a function of temperature at &mgr; approximately 0 M. At &mgr; approximately 0 M and 25.0 degrees C, K(1) = (3.5 +/- 0.1) x 10(-)(9) M(2) and DeltaH degrees = 62 +/- 1 kJ mol(-)(1). At &mgr; = 0.50 M and 25.0 degrees C, K(1) = (6.1 +/- 0.1) x 10(-)(9) M(2) and the rate constant (k(-)(1)) for the reverse reaction of HOBr + H(+) + Br(-) equals (1.6 +/- 0.2) x 10(10) M(-)(2) s(-)(1). This reaction is general-acid-assisted with a Br?nsted alpha value of 0.2. The corresponding Br(2)(aq) hydrolysis rate constant, k(1), equals 97 s(-)(1), and the reaction is general-base-assisted (beta = 0.8).  相似文献   

2.
A new 2-(9-anthrylmethylamino)ethyl-appended cyclen, L(3) (1-(2-(9-anthrylmethylamino)ethyl)-1,4,7,10-tetraazacyclododecane) (cyclen = 1,4,7,10-tetraazacyclododecane), was synthesized and characterized for a new Zn(2+) chelation-enhanced fluorophore, in comparison with previously reported 9-anthrylmethylcyclen L(1) (1-(9-anthrylmethyl)-1,4,7,10-tetraazacyclododecane) and dansylamide cyclen L(2). L(3) showed protonation constants log K(a)(i)() of 10.57 +/- 0.02, 9.10 +/- 0.02, 7.15 +/- 0.02, <2, and <2. The log K(a3) value of 7.15 was assigned to the pendant 2-(9-anthrylmethylamino)ethyl on the basis of the pH-dependent (1)H NMR and fluorescence spectroscopic measurements. The potentiometric pH titration study indicated extremely stable 1:1 Zn(2+)-L(3) complexation with a stability constant log K(s)(ZnL(3)) (where K(s)(ZnL(3)) = [ZnL(3)]/[Zn(2+)][L(3)] (M(-)(1))) of 17.6 at 25 degrees C with I = 0.1 (NaNO(3)), which is translated into the much smaller apparent dissociation constant K(d) (=[Zn(2+)](free)[L(3)](free)/[ZnL(3)]) of 2 x 10(-)(11) M with respect to 5 x 10(-)(8) M for L(1) at pH 7.4. The quantum yield (Phi = 0.14) in the fluorescent emission of L(3) increased to Phi = 0.44 upon complexation with zinc(II) ion at pH 7.4 (excitation at 368 nm). The fluorescence of 5 microM L(3) at pH 7.4 linearly increased with a 0.1-5 microM concentration of zinc(II). By comparison, the fluorescent emission of the free ligand L(1) decreased upon binding to Zn(2+) (from Phi = 0.27 to Phi = 0.19) at pH 7.4 (excitation at 368 nm). The Zn(2+) complexation with L(3) occurred more rapidly (the second-order rate constant k(2) is 4.6 x 10(2) M(-)(1) s(-)(1)) at pH 7.4 than that with L(1) (k(2) = 5.6 x 10 M(-)(1) s(-)(1)) and L(2) (k(2) = 1.4 x 10(2) M(-)(1) s(-)(1)). With an additionally inserted ethylamine in the pendant group, the macrocyclic ligand L(3) is a more effective and practical zinc(II) fluorophore than L(1).  相似文献   

3.
The beta-diketone Hamac = 3-(N-acetylamido)pentane-2,4-dione was characterized by potentiometric, spectrophotometric, and kinetic methods. In water, Hamac is very soluble (2.45 M) and strongly enolized, with [enol]/[ketone] = 2.4 +/- 0.1. The pK(a) of Hamac is 7.01 +/- 0.07, and the rate constants for enolization, k(e), and ketonization, k(k), at 298 K are 0.0172 +/- 0.0004 s(-1) and 0.0074 +/- 0.0015 s(-1), respectively. An X-ray structure analysis of the copper(II) complex Cu(amac)(2).toluene (=C(21)H(28)CuN(2)O(6); monoclinic, C2/c; a = 20.434(6), b = 11.674(4), c = 19.278(6) ?; beta = 100.75(1) degrees; Z = 8; R(w) = 0.0596) was carried out. The bidentate anions amac(-) coordinate the copper via the two diketo oxygen atoms to form a slightly distorted planar CuO(4) coordination core. Rapid-scan stopped-flow spectrophotometry was used to study the kinetics of the reaction of divalent metal ions M(2+) (M = Ni,Co,Cu) with Hamac in buffered aqueous solution at variable pH and I = 0.5 M (NaClO(4)) under pseudo-first-order conditions ([M(2+)](0) > [Hamac](0)) to form the mono complex M(amac)(+). For all three metals the reaction is biphasic. The absorbance/time data can be fitted to the sum of two exponentials, which leads to first-order rate constants k(f) (fast initial step) and k(s) (slower second step). The temperature dependence of k(f) and k(s) was measured. It follows from the kinetic data that (i) the keto tautomer of Hamac, HK, does not react with the metal ions M(2+), (ii) the rate constant k(f) increases linearly with [M(2+)](0) according to k(f) = k(0) + k(2)[M(2+)](0), and (iii) the rate constant k(s) does not depend on [M(2+)](0) and describes the enolization of the unreactive keto tautomer HK. The pH dependence of the second-order rate constant k(2) reveals that both the enol tautomer of Hamac, HE, and the enolate, E(-), react with M(2+) in a second-order reaction to form the species M(amac)(+). At 298 K rate constants k(HE) are 18 +/- 6 (Ni), 180 +/- 350 (Co), and (9 +/- 5) x 10(4) (Cu) M(-1) s(-1) and rate constants k(E) are 924 +/- 6 (Ni), (7.4 +/- 0.6) x 10(4) (Co), and (8.4 +/- 0.2) x 10(8) (Cu) M(-1) s(-1). The acid dissociation of the species M(amac)(+) is triphasic. Very rapid protonation (first step) leads to M(Hamac)(2+), which is followed by dissociation of M(Hamac)(2+) and M(amac)(+), respectively (second step). The liberated enol Hamac ketonizes (third step). The mechanistic implications of the metal dependence of rate constants k(HE), k(E), k(-HE), and k(-E) are discussed.  相似文献   

4.
The manganese(II) ion has many favorable properties that lead to its potential use as an MRI contrast agent: high spin number, long electronic relaxation time, labile water exchange. The present work describes the design, synthesis, and evaluation of a novel Mn(II) complex (MnL1) based on EDTA and also contains a moiety that noncovalently binds the complex to serum albumin, the same moiety used in the gadolinium based contrast agent MS-325. Ultrafiltration albumin binding measurements (0.1 mM, pH 7.4, 37 degrees C) indicated that the complex binds well to plasma proteins (rabbit: 96 +/- 2% bound, human: 93 +/- 2% bound), and most likely to serum albumin (rabbit: 89 +/- 2% bound, human 98 +/- 2% bound). Observed relaxivities (+/- 5%) of the complex were measured (20 MHz, 37 degrees C, 0.1 mM, pH 7.4) in HEPES buffer (r(1) = 5.8 mM(-)(1) s(-)(1)), rabbit plasma (r(1) = 51 mM(-)(1) s(-)(1)), human plasma (r(1) = 46 mM(-)(1) s(-)(1)), 4.5% rabbit serum albumin (r(1) = 47 mM(-)(1) s(-)(1)), and 4.5% human serum albumin (r(1) = 48 mM(-)(1) s(-)(1)). The water exchange rate was near optimal for an MRI contrast agent (k(298) = 2.3 +/- 0.9 x 10(8) s(-)(1)). Variable temperature NMRD profiles indicated that the high relaxivity was due to slow tumbling of the albumin-bound complex and fast exchange of the inner sphere water. The concept of a high relaxivity Mn(II)-based contrast agent was validated by imaging at 1.5 T. In a rabbit model of carotid artery injury, MnL1 clearly delineated both arteries and veins while also distinguishing between healthy tissue and regions of vessel damage.  相似文献   

5.
The antitumor drug cisplatin forms two kinds of guanine-guanine cross-links with DNA: intrastrand, occurring mainly at GG sites, and interstrand, formed at GC sites. The former are generally more abundant than the latter, at least in experiments with linear duplex DNA. The formation of interstrand cross-links requires partial disruption of the Watson-Crick base pairing, and one could therefore expect the cross-linking reaction to be rather slow. In contrast with this expectation, kinetic measurements reported here indicate that interstrand cross-linking is as fast as intrastrand, or even faster. We have investigated the reactions between two hairpin-stabilized DNA duplexes, containing either a d(TGCA)(2) sequence (duplex TGCA) or a d(G(1)G(2)CA)-d(TG(3)CC) sequence (duplex GGCA), and the diaqua form of cisplatin, cis-[Pt(NH(3))(2)(H(2)O)(2)](2+), in an unbuffered solution kept at pH 4.5 +/- 0.1 and 20 degrees C. Using HPLC as the analytical method, we have determined the platination (first step) and chelation (second step) rate constants for these reaction systems. Duplex TGCA, in which the two guanines are quasi-equivalent, is found to be platinated very slowly (k=0.5 +/- 0.1M(-1)s(-1)) and to form the final interstrand cross-link very rapidly (k=13 +/- 3 x 10(-3) s(-11)). For GGCA, we find that G(1) is platinated rapidly (k=32 +/- 5M(-1)s(-1)) to form a long-lived monoadduct, which is only slowly chelated (k=0.039 +/- 0.001 x 10(-3) s(-1)) by G(2) (intrastrand), while G(2) is platinated one order of magnitude more slowly than G(1) (k=2.0 +/- 0.5M(-1)s(-1)) and chelated fairly rapidly both by G(1) (intrastrand: k=0.4 +/-0.1 x 10(-3) s(-1)) and G(3) (interstrand: k=0.2 +/- 0.1 x 10(-3) s(-1)); finally, G(3) is platinated at about the same rate as G(2) (k=2.4 +/- 0.5M(-1)s(-1)) and chelated very rapidly by G(2) (interstrand: k=10 +/- 4 x 10(-3) s(-1)). These results suggest that the low occurrence of interstrand cross-links in cisplatinated DNA is due to an extremely slow initial platination of guanines involved in d(GC)(2) sequences, rather than to a slow cross-linking reaction.  相似文献   

6.
Stability constants were measured for complexes formed between a modified DTPA ligand and the metal ions Gd(III), Eu(III), Fe(III), Ca(II), Cu(II), and Zn(II) at 25 degrees C in 0.1 M NaClO4. The gadolinium complex of this ligand is MS-325, a novel blood pool contrast agent for magnetic resonance imaging currently undergoing clinical trials. Stability constants were determined by 4 different methods: direct pH titration, pH titration with competition by EDTA, competition with DTPA using an HPLC-MS detection system, and competition with Eu(III) by monitoring equilibrium by luminescence spectroscopy. The 1:1 stability constants, log beta101, are the following: Gd, 22.06 (23.2 in 0.1 M Me4NCl); Eu, 22.21; Fe, 26.66; Ca, 10.45; Cu, 21.3; Zn, 17.82. The exchange kinetics of the Gd complex, MS-325, with the radioactive tracer (152,154)Eu were studied at 25 degrees C in 0.1 M NaClO4. The exchange reaction has acid-dependent and acid-independent terms. The rate expression is given by the following: R = k(a)[GdL][H]2 + kb[GdL][Gd][H] + kc[GdL][Gd]. The rate constants were determined to be the following: k(a) = 1.84 x 10(6) M(-2) x min(-1), kb = 2.87 x 10(3) M(-2) x min(-1), kc = 3.72 x 10(-3) M(-1) x min(-1). MS-325 is 2-3 times more stable than GdDTPA at pH 7.4 and is 10-100 times more kinetically inert.  相似文献   

7.
An electrochemically prepared thin film of cobalt pentacyanonitrosylferrate (GC/CoPCNF) was used as a surface modifier for glassy carbon electrodes. The oxidation of ascorbic acid on a glassy carbon electrode modified with GC/CoPCNF as a working electrode was studied using cyclic voltammetry, rotating disk electrode (RDE) voltammetry and chronoamperometry in a 0.25 M KNO3 + 0.25 M phosphate buffer (pH 7) solution. The glassy carbon modified with CoPCNF showed good electrocatalytic activity toward ascorbic acid oxidation. The kinetics of the catalytic reaction was investigated, and the average value of the rate constant (k) for the catalytic reaction and the diffusion coefficient (D) were evaluated by different approaches for ascorbic acid, and were found to be 3.3 +/- 0.3 x 10(2) M(-1) s(-1) and 3.2 +/- 0.3 x 10(-6) cm2 s(-1), respectively.  相似文献   

8.
The photophysical behavior of a new fluorescein derivative has been explored by using absorption and steady-state and time-resolved fluorescence measurements. The influence of ionic strength, as well as total buffer concentration, on both the absorbance and fluorescence has been investigated. The apparent acidity constant of the dye determined by absorbance is almost independent of the added buffer and salt concentrations. A semiempirical model is proposed to rationalize the variations in the apparent pKa values. The excited-state proton-exchange reaction around the physiological pH becomes reversible upon addition of phosphate buffer, inducing a pH-dependent change of the steady-state fluorescence and decay times. Fluorescence decay traces, collected as a function of total buffer concentration and pH, were analyzed by global compartmental analysis, yielding the following values of the rate constants describing excited-state dynamics: k01 = 1.29 x 10(10) s(-1), k02 = 4.21 x 10(8) s(-1), k21 approximately 3 x 10(6) M(-1) s(-1), k12B= 6.40 x 10(8) M(-1) s(-1), and k21B = 2.61 x 10(7) M(-1) s(-1). The decay rate constant values of k01, k21, k21B, along with the low molar absorption coefficient of the neutral form, mean that coupled decays are practically monoexponential at buffer concentrations higher than 0.02 M and any pH. Thus, the pH and buffer concentration can modulate the main lifetime of the dye.  相似文献   

9.
Stopped-flow spectrophotometric measurements identify and determine equilibrium data for thiourea (tu) complexes of copper(II) formed in aqueous solution. In excess Cu(II), the complex ion [Cu(tu)](2+) has a stability constant beta(1) = 2.3 +/- 0.1 M(-)(1) and molar absorptivity at 340 nm of epsilon(1) = (4.0 +/- 0.2) x 10(3) M(-)(1) cm(-)(1) at 25.0 degrees C, 2.48 mM HClO(4), and &mgr; = 464 mM (NaClO(4)). The fast reduction of Cu(II) by excess tu obeys the rate law -d[Cu(II)]/dt = k'[Cu(II)](2)[tu](7) with a value for the ninth-order rate constant k' = (1.60 +/- 0.18) x 10(14) M(-)(8) s(-)(1), which derives from a rate-determining step involving the bimolecular decomposition of two complexed Cu(II) species. Copper(II) catalyzes the reduction of hexachloroiridate(IV) by tu according to the rate law -d[IrCl(6)(2)(-)]/dt = (k(2,unc)[tu](2) + k(1,cat) [tu](5)[Cu(II)])[IrCl(6)(2)(-)]. Least-squares analysis yields values of k(2,unc) and k(1,cat) equaling 385 +/- 4 M(-)(2) s(-)(1) and (3.7 +/- 0.1) x 10(13) M(-)(6) s(-)(1), respectively, at &mgr; = 115 mM (NaClO(4)). The corresponding mechanism has a rate-determining step that involves the oxidation of [Cu(II)(tu)(5)](2+) by [IrCl(6)](2)(-) rather than the bimolecular reaction of two cupric-tu complexes.  相似文献   

10.
The kinetics and the equilibria of Ni(II) binding to p-hydroxybenzohydroxamic acid (PHBHA) and salicylhydroxamic acid (SHA) have been investigated in an aqueous solution at 25 degrees C and I=0.2 M by the stopped-flow method. Two reaction paths involving metal binding to the neutral acid and to its anion have been observed. Concerning PHBHA, the rate constants of the forward and reverse steps are k1=(1.9+/-0.1)x10(3) M-1 s-1 and k-1=(1.1+/-0.1)x10(2) s-1 for the step involving the undissociated PHBHA and k2=(3.2+/-0.2)x10(4) M-1 s-1 and k-2=1.2+/-0.2 s-1 for the step involving the anion. Concerning SHA, the analogous rate constants are k1=(2.6+/-0.1)x10(3) M-1 s-1, k-1=(1.3+/-0.1)x10(3) s-1, k2=(5.4+/-0.2)x10(3) M-1 s-1, and k-2=6.3+/-0.5 s-1. These values indicate that metal binding to the anions of the two acids concurs with the Eigen-Wilkins mechanism and that the phenol oxygen is not involved in the chelation. Moreover, a slow effect was observed in the SHA-Ni(II) system, which has been put down to rotation of the benzene ring around the C-C bond. Quantum mechanical calculations at the B3LYP/lanL2DZ level reveal that the phenol group in the most stable form of the Ni(II) chelate is in trans position relative to the carbonyl oxygen, contrary to the free SHA structure, where the phenol and carbonyl oxygen atoms both have cis configuration. These results bear out the idea that the complex formation is coupled with phenol rotation around the C-C bond.  相似文献   

11.
The photophysical behavior of BCECF [2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein]--currently the most widely used fluorescent pH indicator for near-neutral intracellular pH measurements--has been explored by using absorption and steady-state and time-resolved fluorescence measurements. The influence of ionic strength as well as total buffer concentration on the absorbance and steady-state fluorescence has been investigated. The apparent acidity constant of the pH indicator determined by absorbance and fluorescence titration is dependent on the added buffer and salt concentrations. A semiempirical model is proposed to rationalize the variations in the apparent pKa values. The excited-state proton exchange of BCECF at physiological pH becomes reversible upon addition of phosphate buffer, inducing a pH-dependent change of the fluorescence decay times. Fluorescence decay traces collected as a function of total buffer concentration and pH were analyzed by global compartmental analysis yielding the following values of the rate constants describing excited-state dynamics of BCECF: k01 = 3.4 x 10(8) s(-1), k02 = 2.6 x 10(8) s(-1), k21 approximately 1 x 10(6) M(-1) s(-1), k12(B) = 1.4 x 10(8) M(-1) s(-1), and k21(B) = 4.3 x 10(7) M(-1) s(-1).  相似文献   

12.
Hemoproteins are known to react with the strong nitrating and oxidizing agent peroxynitrite according to different mechanisms. In this article, we show that the iron(iii) forms of the sperm whale myoglobin (sw Mb) mutants H64A, H64D, H64L, F43W/H64L, and H64Y/H93G catalyze the isomerization of peroxynitrite to nitrate. The two most efficient catalysts are H64A (k(cat) = (5.8 +/- 0.1) x 10(6) M(-1) s(-1), at pH 7.5 and 20 degrees C) and H64D metMb (k(cat) = (4.8 +/- 0.1) x 10(6) M(-1) s(-1), at pH 7.5 and 20 degrees C). The pH dependence of the values of k(cat) shows that HOONO is the species which reacts with the heme. In the presence of physiologically relevant concentrations of CO(2) (1.2 mM), the decay of peroxynitrite is accelerated by these metMb mutants via the concurring reaction of HOONO with their iron(iii) centers. Studies in the presence of free added tyrosine show that the metMb mutants prevent peroxynitrite-mediated nitration. The efficiency of the different sw metMb mutants correlates with the value of k(cat). Finally, we show that sw WT-metMb is nitrated to a larger extent than horse heart metMb, a result that suggests that the additional Tyr151 is a site of preferential nitration. Again, the extent of nitration of the tyrosine residues of the metMb mutants correlates with the values of k(cat).  相似文献   

13.
Galian RE  Veglia AV  de Rossi RH 《The Analyst》2000,125(8):1465-1470
The effects of native cyclodextrins (alpha, beta or gamma), hydroxypropyl-beta-cyclodextrin, beta-cyclodextrin solubilized in urea, soluble starch and glucose in water solution on the fluorescence behaviour of melatonin (N-acetyl-5-methoxytryptamine) (M) and 5-methoxytryptamine [5-methoxy-3-(2-aminoethyl)indole] (5M) were determined. In addition, the effect of methanol and propanol with and without beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin was assessed. From the fluorescence changes with pH, the values of the pKa for the ground (9.9 +/- 0.2) and the excited state (7.7 +/- 0.2) for 5M were determined. From the fluorescence changes with beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin, the association constants of M, 5MH [5-methoxy-3-(2-ammoniumethyl)indole] and 5M with the two hosts were determined. The values with beta-cyclodextrin were KAssoc5MH = (1.4 +/- 0.4) x 10(2) mol-1 dm3, KAssoc5M = (1.6 +/- 0.1) x 10(2) mol-1 dm3 and KAssocM = (1.1 +/- 0.2) x 10(2) mol-1 dm3, and with hydroxypropyl-beta-cyclodextrin KAssoc5MH = (1.1 +/- 0.3) x 10(2) mol-1 dm3, KAssoc5M = (2.5 +/- 0.1) x 10(2) mol-1 dm3 and KAssocM = (1.51 +/- 0.07) x 10(2) mol-1 dm3. The ratios of the fluorescence quantum yields for the bound and free substrate (phi b/phi f) were in the range 1.15-1.48. The detection limits under the optimum conditions were 0.381 +/- 0.001 ng cm-3 for the complex 5MH-hydroxypropyl-beta-cyclodextrin in water and 0.290 +/- 0.001 ng cm-3 for the complex M-hydroxypropyl-beta-cyclodextrin in water with 5% of methanol. The recovery of melatonin from pharmaceutical preparations was 98-103% with an RSD of 2%. The recovery from rat pineals was also good. The method is direct, simple and accurate.  相似文献   

14.
The relative rates of C-H activation of methane, methanol, and dimethyl ether by [(N-N)PtMe(TFE-d(3))](+) ((N-N) = ArN=C(Me)-C(Me)=NAr; Ar = 3,5-di-tert-butylphenyl, TFE-d(3) = CF(3)CD(2)OD) (2(TFE)) were determined. Methane activation kinetics were conducted by reacting 2(TFE)-(13)C with 300-1000 psi of methane in single-crystal sapphire NMR tubes; clean second-order behavior was obtained (k = 1.6 +/- 0.4 x 10(-3) M(-1) s(-1) at 330 K; k = 2.7 +/- 0.2 x 10(-4) M(-1) s(-1) at 313 K). Addition of methanol to solutions of 2(TFE) rapidly establishes equilibrium between methanol (2(MeOD)) and trifluoroethanol (2(TFE)) adducts, with methanol binding preferentially (K(eq) = 0.0042 +/- 0.0006). C-H activation gives [(N-N)Pt(CH(2)OD)(MeOD)](+) (4), which is unstable and reacts with [(RO)B(C(6)F(5))(3)](-) to generate a pentafluorophenyl platinum complex. Analysis of kinetics data for reaction of 2 with methanol yields k = 2.0 +/- 0.2 x 10(-3) M(-1) s(-1) at 330 K, with a small kinetic isotope effect (k(H)/k(D) = 1.4 +/- 0.1). Reaction of dimethyl ether with 2(TFE) proceeds similarly (K(eq) = 0.023 +/- 0.002, 313 K; k = 5.5 +/- 0.5 x 10(-4) M(-1) s(-1), k(H)/k(D) = 1.5 +/- 0.1); the product obtained is a novel bis(alkylidene)-bridged platinum dimer, [(diimine)Pt(mu-CH(2))(mu-(CH(OCH(3)))Pt(diimine)](2+) (5). Displacement of TFE by a C-H bond appears to be the rate-determining step for all three substrates; comparison of the second-order rate constants (k((methane))/k((methanol)) = 1/1.3, 330 K; k((methane))/k((dimethy)(l e)(ther)) = 1/2.0, 313 K) shows that this step is relatively unselective for the C-H bonds of methane, methanol, or dimethyl ether. This low selectivity agrees with previous estimates for oxidations with aqueous tetrachloroplatinate(II)/hexachloroplatinate(IV), suggesting a similar rate-determining step for those reactions.  相似文献   

15.
By the use of [1H,15N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy and electrochemical methods we have determined the hydrolysis profile of the bifunctional dinuclear platinum complex [[trans-PtCl(15NH3)2]2(mu-15NH2(CH2)(6)15NH2)]2+ (1,1/t,t (n = 6), 15N-1), the prototype of a novel class of potential antitumor complexes. Reported are estimates for the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pKa1 approximately pKa2 approximately pKa3). The equilibrium constants determined by NMR at 25 and 37 degrees C (I = 0.1 M) were similar, pK1 approximately pK2 = 3.9 +/- 0.2, and from a chloride release experiment at 37 degrees C the values were found to be pK1 = 4.11 +/- 0.05 and pK2 = 4.2 +/- 0.5. The forward and reverse rate constants for aquation determined from this chloride release experiment were k1 = (8.5 +/- 0.3) x 10(-5) s-1 and k-1 = 0.91 +/- 0.06 M-1 s-1, where the model assumed that all the liberated chloride came from 1. When the second aquation step was also taken into account, the rate constants were k1 = (7.9 +/- 0.2) x 10(-5) s-1, k-1 = 1.18 +/- 0.06 M-1 s-1, k2 = (10.6 +/- 3.0) x 10(-4) s-1, k-2 = 1.5 +/- 0.6 M-1 s-1. The rate constants compare favorably with other complexes with the [PtCl(am(m)ine)3]+ moiety and indicate that the equilibrium of all these species favors the chloro form. A pKa value of 5.62 was determined for the diaquated species [[trans-Pt(15NH3)2(H2O)]2(mu-15NH2(CH2)(6)15NH2)]4+ (3) using [1H,15N] HSQC NMR spectroscopy. The speciation profile of 1 and its hydrolysis products under physiological conditions is explored.  相似文献   

16.
Lin XH  Wan HY  Zhang YF  Chen JH 《Talanta》2008,74(4):944-950
The interaction of Aloe-emodin (AE) with salmon sperm DNA in 0.1M Tris-HCl buffer (pH 4.4) and at the DNA-modified glassy carbon electrode (GCE) was systemically studied with voltammetry and ultraviolet-visible (UV-vis) spectroscopy. AE had excellent electrochemical activity on the GCE with a couple of redox peaks. We propose that AE can intercalate into DNA strands forming a nonelectroactive complex, which results in the decrease of the reduction peak current of AE. The Langmuir adsorption constants of AE at ss- and dsDNA/GCE were (2.1+/-0.4)x10(5) and (2.7+/-0.2)x10(5)M(-1), respectively. The difference between AE at ss- and dsDNA has been used for the preparation of a sequence-specific DNA electrochemical biosensor for detection of PML-RARalpha fusion gene in acute promyelocytic leukemia (APL) with a detection limit of 6.7x10(-8)M and a linear range from 1.5x10(-8) to 1.5x10(-7)M. The selectivity of ssDNA-modified electrode was also described.  相似文献   

17.
Kinetic studies involving the use of both stopped-flow and diode array spectrophotometers, show that the reaction between SNAP and captopril in the presence of the metal ion sequestering agent, EDTA, occurs in two well-defined stages. The first stage is a fast reaction while the second stage is slow. The first stage has been postulated to be transnitrosation, and the second stage involves the decay of the newly formed RSNO to effect nitric oxide (NO) release. Both stages are found to be dependent on captopril and H+ concentration. The rates of the transnitrosation increased drastically with increasing pH in the first stage, signifying that the deprotonated form of captopril is the more reactive species. In the case of the second stage the variation in pH showed an increase in rate up to pH 8 after which the rate remained unchanged. Both stages were clearly distinguishable and easily monitored separately. Transnitrosation is a reversible reaction with the tendency for the equilibrium to break down at high thiol concentration. Second-order rate constants were calculated based on the following derived expressions: -d[SNAP]/dt=k(f)((K(SHCapSH)[CapSH](t))/(K(SHCapSH)+[H+]))[SNAP]. k(f) is the second-order rate constant for the forward reaction of the reversible transnitrosation process. At 37 degrees C, k(f)= 785 +/- 14 M(-1) s(-1), activation parameters [Delta]H(f)++= 49 +/- 2 kJ mol(-1), (Delta)S(f)++=-32 +/- 2 J K(-1) mol(-1). The activation parameters demonstrate the associative nature of the transnitrosation mechanism. The second stage has been found to be very complex, as a variety of nitrogen products form as predicted before. However, the following expression was derived from the initial kinetic data: rate =k1K[SNOCap][CapS-]/(K[CapS-]+ 1) to give k1= 13.3 +/- 0.4 x 10(-4) s(-1) and K= 5.59 +/- 0.53 x 10(4) M(-1), at 37 degrees C, where k1 is the first-order rate constant for the decay of the intermediate formed during the reaction between SNOCap and the remaining excess CapSH present at the end of the first stage reaction. Activation parameters are (Delta)H1++= 37 +/- 1 kJ mol(-1), (Delta)S1++=-181 +/- 44 J K(-1) mol(-1).  相似文献   

18.
The reaction between photogenerated NO(2) radicals and a superoxochromium(III) complex, Cr(aq)OO(2+), occurs with rate constants k(Cr)(20) = (2.8 +/- 0.2) x 10(8) M(-)(1) s(-)(1) (20 vol % acetonitrile in water) and k(Cr)(40) = (2.6 +/- 0.5) x 10(8) M(-)(1) s(-)(1) (40 vol % acetonitrile) in aerated acidic solutions and ambient temperature. The product was deduced to be a peroxynitrato complex, Cr(aq)OONO(2)(2+), which undergoes homolytic cleavage of an N-O bond to return to the starting materials, the rate constants in the two solvent mixtures being k(H)(20) = 172 +/- 4 s(-)(1) and k(H)(40) = 197 +/- 7 s(-)(1). NO(2) reacts rapidly with 10-methyl-9,10-dihydroacridine, k(A)(20) = 2.2 x 10(7) M(-)(1) s(-)(1), k(A)(40) = (9.4 +/- 0.2) x 10(6) M(-)(1) s(-)(1), and with N,N,N',N'-tetramethylphenylenediamine, k(T)(40) = (1.84 +/- 0.03) x 10(8) M(-)(1) s(-)(1).  相似文献   

19.
A detailed mechanistic study of the substitution behavior of a 3d metal heptacoordinate complex, with a rare pentagonal-bipyramidal structure, was undertaken to resolve the solution chemistry of this system. The kinetics of the complex-formation reaction of [Fe(dapsox)(H(2)O)(2)]ClO(4) (H(2)dapsox = 2,6-diacetylpyridine-bis(semioxamazide)) with thiocyanate was studied as a function of thiocyanate concentration, pH, temperature, and pressure. The reaction proceeds in two steps, which are both base-catalyzed due to the formation of an aqua-hydroxo complex (pK(a1) = 5.78 +/- 0.04 and pK(a2) = 9.45 +/- 0.06 at 25 degrees C). Thiocyanate ions displace the first coordinated water molecule in a fast step, followed by a slower reaction in which the second thiocyanate ion coordinates trans to the N-bonded thiocyanate. At 25 degrees C and pH <4.5, only the first reaction step can be observed, and the kinetic parameters (pH 2.5: k(f(I)) = 2.6 +/- 0.1 M(-1) s(-1), DeltaH(#)(f(I)) = 62 +/- 3 kJ mol(-1), DeltaS(#)(f(I)) = -30 +/- 10 J K(-1) mol(-1), and DeltaV(#)(f(I)) = -2.5 +/- 0.2 cm(3) mol(-1)) suggest the operation of an I(a) mechanism. In the pH range 2.5 to 5.2 this reaction step involves the participation of both the diaqua and aqua-hydroxo complexes, for which the complex-formation rate constants were found to be 2.19 +/- 0.06 and 1172 +/- 22 M(-1) s(-1) at 25 degrees C, respectively. The more labile aqua-hydroxo complex is suggested to follow an I(d) or D substitution mechanism on the basis of the reported kinetic data. At pH > or =4.5, the second substitution step also can be monitored (pH 5.5 and 25 degrees C: k(f(II)) = 21.1 +/- 0.5 M(-1) s(-1), DeltaH(#)(f(II)) = 60 +/- 2 kJ mol(-1), DeltaS(#)(f(II)) = -19 +/- 6 J K(-1) mol(-1), and DeltaV(#)(f(II)) = +8.8 +/- 0.3 cm(3) mol(-1)), for which an I(d) or D mechanism is suggested. The results are discussed in terms of known structural parameters and in comparison to relevant structural and kinetic data from the literature.  相似文献   

20.
The reaction of cobalt(III) acetate with excess manganese(II) acetate in acetic acid occurs in two stages, since the two forms Co(IIIc) and Co(IIIs) are not rapidly equilibrated and thus react independently. The rate constants at 24.5 degrees C are kc = 37.1 +/- 0.6 L mol-1 s-1 and ks = 6.8 +/- 0.2 L mol-1 s-1 at 24.5 degrees C in glacial acetic acid. The Mn(III) produced forms a dinuclear complex with the excess of Mn(II). This was studied independently and is characterized by the rate constant (3.43 +/- 0.01) x 10(2) L mol-1 s-1 at 24.5 degrees C. A similar interaction between Mn(III) and Co(II) is substantially slower, with k = (3.73 +/- 0.05) x 10(-1) L mol-1 s-1 at 24.5 degrees C. Mn(II) is also oxidized by Ce(IV), according to the rate law -d[Ce(IV)]/dt = k[Mn(II)]2[Ce(IV)], where k = (6.0 +/- 0.2) x 10(4) L2 mol-2 s-1. The reaction between Mn(II) and HBr2., believed to be involved in the mechanism by which Mn(III) oxidizes HBr, was studied by laser photolysis; the rate constant is (1.48 +/- 0.04) x 10(8) L mol-1 s-1 at approximately 23 degrees C in HOAc. Oxidation of Co(II) by HBr2. has the rate constant (3.0 +/- 0.1) x 10(7) L mol-1 s-1. The oxidation of HBr by Mn(III) is second order with respect to [HBr]; k = (4.10 +/- 0.08) x 10(5) L2 mol-2 s-1 at 4.5 degrees C in 10% aqueous HOAc. Similar reactions with alkali metal bromides were studied; their rate constants are 17-23 times smaller. This noncomplementary reaction is believed to follow that rate law so that HBr2. and not Br. (higher in Gibbs energy by 0.3 V) can serve as the intermediate. The analysis of the reaction steps then requires that the oxidation of HBr2. to Br2 by Mn(III) be diffusion controlled, which is consistent with the driving force and seemingly minor reorganization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号