首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesostructured silicates containing metal nanoparticles have been synthesised via templating around a pre-formed, metal-containing mesophase using a non-ionic surfactant.  相似文献   

2.
The development of green, selective, and efficient catalysts, which can aerobically oxidize a variety of alcohols to their corresponding aldehydes and ketones, is of both economic and environmental significance. We report here the synthesis of a novel aerobic oxidation catalyst, a zeolite-confined nanometer-sized RuO(2) (RuO(2)-FAU), by a one-step hydrothermal method. Using the spatial constraints of the rigid zeolitic framework, we sucessfully incorporated RuO(2) nanoparticles (1.3 +/- 0.2 nm) into the supercages of faujasite zeolite. Ru K-edge X-ray absorption fine structure results indicate that the RuO(2) nanoclusters anchored in the zeolite are structurally similar to highly hydrous RuO(2); that is, there is a two-dimensional structure of independent chains, in which RuO(6) octahedra are connected together by two shared oxygen atoms. In our preliminary catalytic studies, we find that the RuO(2) nanoclusters exhibit extraordinarily high activity and selectivity in the aerobic oxidation of alcohols under mild conditions, for example, air and ambient pressure. The physically trapped RuO(2) nanoclusters cannot diffuse out of the relatively narrow channels/pores of the zeolite during the catalytic process, making the catalyst both stable and reusable.  相似文献   

3.
本文应用XPS和电化学技术研究热分解制备RuO2-IrO2电极的电化学性能和表面性质的关系, 以探讨制备寿命长, 价格低的阳极的可能途径。  相似文献   

4.
制备了一种新的甲醇直接燃料电池Pt/RuO2/CNTs阳极催化剂,在相同Pt负载量下,其甲醇电催化氧化活性是Pt/CNTs的3倍.采用循环伏安法研究发现Pt/RuO2/CNTs纳米催化剂中RuO2含量对甲醇电催化氧化活性有明显影响,当Pt和RuO2在碳纳米管上含量分别为15%和9.5%时,Pt/RuO2/CNTs催化剂具有最佳的甲醇电催化氧化活性.RuO2负载在碳纳米管上比电容的变化,反映了水合RuO2结构中质子与电子传输平衡的能力,分析表明,催化剂中RuO2含量不同导致电容的变化是影响甲醇电催化氧化活性的主要原因.当催化剂结构中质子与电子传输达到平衡时,催化剂比电容最大,电催化氧化活性最高.这种基于电容关联电催化剂的观点对甲醇直接燃料电池阳极催化剂的设计非常有意义.  相似文献   

5.
The effects of RuO(x) structure on the selective oxidation of methanol to methyl formate (MF) at low temperatures were examined on ZrO(2)-supported RuO(x) catalysts with a range of Ru surface densities (0.2-3.8 Ru/nm(2)). Their structure was characterized using complementary methods (X-ray diffraction, Raman and X-ray photoelectron spectra, and reduction dynamics). The structure and reactivity of RuO(x) species change markedly with Ru surface density. RuO(x) existed preferentially as RuO(4)(2-) species below 0.4 Ru/nm(2), probably as isolated Zr(RuO(4))(2) interacting with ZrO(2) surfaces. At higher surface densities, highly dispersed RuO(2) domains coexisted with RuO(4)(2-) and ultimately formed small clusters and became the prevalent form of RuO(x) above 1.9 Ru/nm(2). CH(3)OH oxidation rates per Ru atom and per exposed Ru atom (turnover rates) decreased with increasing Ru surface density. This behavior reflects a decrease in intrinsic reactivity as RuO(x) evolved from RuO(4)(2-) to RuO(2), a conclusion confirmed by transient anaerobic reactions of CH(3)OH and by an excellent correlation between reaction rates and the number of RuO(4)(2-) species in RuO(x)/ZrO(2) catalysts. The high intrinsic reactivity of RuO(4)(2-) structures reflects their higher reducibility, which favors the reduction process required for the kinetically relevant C-H bond activation step in redox cycles using lattice oxygen atoms involved in CH(3)OH oxidation catalysis. These more reactive RuO(4)(2-) species and the more exposed ZrO(2) surfaces on samples with low Ru surface density led to high MF selectivities (e.g. approximately 96% at 0.2 Ru/nm(2)). These findings provide guidance for the design of more effective catalysts for the oxidation of alkanes, alkenes, and alcohols by the synthesis of denser Zr(RuO(4))(2) monolayers on ZrO(2) and other high surface area supports.  相似文献   

6.
以不同温度焙烧TiO(OH)_2得到的TiO_2为载体,采用湿法浸渍法制备RuO_2/TiO_2-C(C=450、550、650及750℃)催化剂,利用XRD、N_2吸附-脱附、TEM和H_2-TPR等表征手段研究催化剂的物理化学性质,并对其在HCl氧化反应中的催化性能进行考察.结果表明:载体焙烧温度对催化剂的结构与活性有显著影响.随着载体焙烧温度(≤650℃)的升高,RuO_2与TiO_2之间的晶面匹配度逐渐变高,促进了RuO_2在TiO_2表面的分散,其中RuO_2/TiO_2-650催化剂表现出最优的催化性能.而当载体焙烧温度过高时,RuO_2/TiO_2-750催化剂的反应活性大大下降,可能是由于过高的焙烧温度导致载体出现严重的烧结团聚现象,以及RuO_2与TiO_2之间过强的相互作用,阻碍了HCl氧化反应的进行.此外,减小RuO_2的粒径可以促进HCl氧化活性的提升.动力学结果显示,催化剂表面的HCl氧化反应主要受O_2分压的影响,表明O_2从催化剂表面的解离吸附为决速步骤.  相似文献   

7.
Structures and properties of PtRu electrocatalyts, derived from the aligned RuO2 nanorods (RuO2NR), are investigated using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and cyclic voltammetry toward COads and methanol oxidation. The catalytic activity of methanol oxidation and the CO tolerance are promoted significantly by reducing RuO2 into Ru metal before decorating with Pt. Reduction of RuO2NR was carried out by either thermal decomposition at 650 degrees C in vacuum or H2-reduction at 130 degrees C in low-pressure hydrogen. Reduction assisted by hydrogen allows infiltrating decomposition at low temperature and produces an array of nanorods with rugged walls featuring small Ru nuclei and larger surface area. Pt-RuNR, whose surface Pt:Ru ratio=0.58:0.42 was prepared by decorating with 0.1 mg cm(-2) Pt on the H2-reduced array containing 0.39 mg cm(-2) Ru, demonstrates a favorable combination of CO tolerance and high methanol oxidation activity superior to other RuO2NR-derived catalysts. When compared with a commercial electrocatalyst of PtRu (1:1) alloy (<4 nm), the activity of Pt-RuNR in methanol oxidation is shown to be somewhat lower at potential<0.48 V and higher at potential>or=0.48 V.  相似文献   

8.
Ruthenium oxides (RuO(2)·1·10H(2)O and RuO(2)) have been synthesized by forced hydrolysis and oxidation of ruthenium chloride. The resulting materials were extensively characterized to determine the crystallinity, surface area, and ruthenium oxidation state. Surface charging experiments indicate a large quantity of reactive functional groups for both materials and a decrease in the acidity of the surface functional groups with crystallization of the hydrous oxide. Dissolution studies conducted in acidic and basic pH environments indicate Ru-oxides are insoluble in 0.1 M HCl and slightly soluble in 0.1 M NaOH. Oxalate and ascorbate (5 mM) promoted dissolution of RuO(2)·1·10H(2)O demonstrated an increase in dissolution rates with decreasing pH and increasing ligand surface coverage. XPS analysis of the RuO(2)·1·10H(2)O surface after ligand promoted dissolution revealed the reduction of Ru(IV) to Ru(III) indicating that both ascorbate and oxalate reductively dissolve RuO(2)·1·10H(2)O. Dissolution experiments with RuO(2) resulted in dissolution only for 5 mM oxalate at pH 3. Dissolution rates calculated for RuO(2)·1·10H(2)O and RuO(2) are compared with previously published dissolution rates for iron oxides, demonstrating an order of magnitude decrease in the oxalate and ascorbate promoted dissolution.  相似文献   

9.
The visualization of surface reactions on the atomic scale provides direct insight into the microscopic reaction steps taking place in a catalytic reaction at a (model) catalyst's surface. Employing the technique of scanning tunneling microscopy (STM), we investigated the CO oxidation reaction over the RuO2(110) and RuO2(100) surfaces. For both surfaces the protruding bridging O atoms are imaged in STM as bright features. The reaction mechanism is identical on both orientations of RuO2. CO molecules adsorb on the undercoordinated surface Ru atoms from where they recombine with undercoordinated O atoms to form CO2 at the oxide surface. In contrast to the RuO2(110) surface, the RuO2(100) surface stabilizes also a catalytically inactive c(2 x 2) surface phase onto which CO is not able to adsorb above 100 K. We argue that this inactive RuO2(100)-c(2 x 2) phase may play an important role in the deactivation of RuO2 catalysts in the electrochemical Cl2 evolution and other heterogeneous reactions.  相似文献   

10.
With surface X-ray diffraction (SXRD) using a high-pressure reaction chamber we investigated in-situ the oxidation of the Ru(0001) model catalyst under various reaction conditions, starting from a strongly oxidizing environment to reaction conditions typical for CO oxidation. With a mixture of O(2) and CO (stoichiometry, 2:1) the partial pressure of oxygen has to be increased to 20 mbar to form the catalytically active RuO(2)(110) oxide film, while in pure oxygen environment a pressure of 10(-5) mbar is already sufficient to oxidize the Ru(0001) surface. For preparation temperatures in the range of 550-630 K a self-limiting RuO(2)(110) film is produced with a thickness of 1.6 nm. The RuO(2)(110) film grows self-acceleratedly after an induction period. The RuO(2) films on Ru(0001) can readily be reduced by H(2) and CO exposures at 415 K, without an induction period.  相似文献   

11.
Lai S  Lepage CJ  Lee DG 《Inorganic chemistry》2002,41(7):1954-1957
The oxidation of methoxy substituted benzyl phenyl sulfides can be used to distinguish between oxidants that react by single electron transfer (followed by oxygen rebound) and those which react by direct oxygen atom transfer in a two-electron process. Transfer of a single electron results in the formation of an intermediate radical cation, which can undergo C-S bond cleavage and deprotonation reactions leading to the formation of methoxy substituted benzyl derivatives, methoxy substituted benzaldehydes, and diphenyl disulfide. The oxidation of 4-methoxybenzyl phenyl sulfide and 3,4,5-trimethoxybenzyl phenyl sulfide by oxidants known to participate in single electron transfers (Ce(4+), Mn(3+), and Cr(6+)) results in the formation of the corresponding benzaldehydes, benzyl alcohols, benzyl acetates, and benzyl nitrates in variable yields. However, the only products obtained from the oxidation of the same compounds with RuO(4), RuO(4-), and RuO(4)(2-) are sulfoxides and sulfones. Therefore, it is concluded that the oxidation of sulfides by oxoruthenium compounds likely proceeds by a concerted mechanism.  相似文献   

12.
A de novo preparation of alpha-keto-imides via ynamide oxidation is described. With a number of alkyne oxidation conditions screened, a highly efficient RuO2-NaIO4 mediated oxidation and a DMDO oxidation have been identified to tolerate a wide range of ynamide types. In addition to accessing a wide variety of alpha-keto-imides, the RuO2-NaIO4 protocol provides a novel entry to the vicinal tricarbonyl motif via oxidation of push-pull ynamides, and imido acylsilanes from silyl-substituted ynamides. Chemoselective oxidation of ynamides containing olefins can be achieved by using DMDO, while the RuO2-NaIO4 protocol is not effective. These studies provide further support for the synthetic utility of ynamides.  相似文献   

13.
采用浸渍法制备了RuO2/γ-Al2O3和RuO2-CeO2/γ-Al2O3催化剂,利用XRD,XPS和ESR分析了催化剂的结构,并研究了湿式氧化降解苯酚的活性.结果表明,两种催化剂表面RuO2均有良好的分散性,并且催化剂表面存在氧空位和化学吸附氧,CeO2的掺杂使催化剂表面氧空位和化学吸附氧数量增加.两种催化剂对湿式氧化降解苯酚具有良好的催化活性,当苯酚质量浓度为4200mg/L,在150℃和3MPa下,RuO2/γ-Al2O3催化剂湿式氧化降解苯酚反应150min后,苯酚全部被去除,RuO2-CeO2/γ-Al2O3催化剂反应60min后,苯酚的去除率为96%.  相似文献   

14.
RuO(2)-based catalysts are much more active in the oxidation of CO than related metallic Ru catalysts. This high catalytic activity (or low activation barrier) is attributed to the weak oxygen surface bonding of bridging O atoms on RuO(2)(110) in comparison with the strongly chemisorbed oxygen on Ru(0001). Since the RuO(2)(110) surface is able to stabilize an even more weakly bound on-top oxygen species, one would anticipate that the catalytic activity will increase further under oxidizing conditions. We will show that this view is far too simple to explain our temperature-programmed reaction experiments, employing isotope labeling of the potentially active surface oxygen species on RuO(2)(110). Rather, both surface O species on RuO(2)(110) reveal similar activities in oxidizing CO.  相似文献   

15.
An alloy catalyst of 15 wt % Pt(50)Ru(50)/C was prepared by the method of incipient wetness impregnation and activated by hydrogen reduction at 620 K. Physical characterization of the freshly reduced catalyst indicated that bimetallic crystallites, Pt rich in the shell and Ru rich in the core, were finely dispersed in a diameter of dPtRu approximately 2 nm on carbon support. The reduced catalyst was subsequently modified by oxidization in air. On increasing the temperature of oxidation (T(o)), atoms of Ru in the core were found segregated to the surface of bimetallic crystallites and oxidized to amorphous RuO(2). Crystalline RuO(2) (RucO(2)) was formed on extensive segregation at To > 520 K. Catalytic activity of the alloy catalyst for electro-oxidation of methanol was examined by cyclic voltammetry. Electrochemical activity of the Pt-Ru/C catalyst was found to be significantly enhanced by oxidation treatments. The enhancement was, therefore, attributed to the segregation of Ru and the formation of RucO(2). Extensive oxidation treatment at elevated temperatures of To > 600 K, however, caused the deactivation of the electroactivity. The deactivation should be the result of excessive oxidation of the carbon support.  相似文献   

16.
The oxidation of C-H and C-C bonds by metal-oxo compounds is of general interest. We studied the RuO4-mediated catalytic oxidation of several cycloalkanes such as adamantane and cis- and trans-decalin as well as methane. B3LYP/6-31G(d) calculations on the experimentally proposed (3+2) mechanism are in good agreement with known experimental results. Comparison of experimental and theoretical kinetic isotope effects confirms the proposed mechanism. Besides RuO4, we also looked at RuO4(OH)- as a potential active species to account for ruthenium tetraoxide oxidations under strong basic conditions.  相似文献   

17.
RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99%) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable ability of RuO2-based catalysts to oxidize CH3OH to HCHO at unprecedented low temperatures introduce significant opportunities for new routes to complex oxygenates, including some containing C-C bonds, using methanol or ethanol as intermediates derived from natural gas or biomass.  相似文献   

18.
Monolithic pieces of hierarchically structured silica, containing both periodic macropores and mesopores with well-controlled architecture, are synthesized by dual templating methods. Colloidal crystal templating with close-packed arrays of poly(methyl methacrylate) spheres yields regular, highly interconnected macropores a few hundred nanometers in diameter, and templating with nonionic surfactants produces mesoporosity (2.5-5.1 nm pore diameters) in the macropore walls. Several distinct mesostructures can be achieved within the silica skeleton, depending on the choice of surfactant, co-surfactant, and processing conditions. In the three-dimensional (3D) confinement of the colloidal crystal template, wormlike channels, cubic (Pm3n), or two-dimensional (2D) hexagonal (P6mm) mesostructures are produced with the surfactant Brij 56 (C16H33(OCH2CH2)nOH (n approximately 10) and dodecane as cosurfactant. In the 2D hexagonal structure, channels are oriented perpendicular to the polymer spheres, thereby connecting adjacent macropores through the silica walls. This orientation contrasts with channel alignment parallel to latex spheres when the polymeric surfactant Pluronic P123 (EO20PO70EO20) is used. On the basis of high-resolution 3D transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, and nitrogen sorption measurements, structural and textural properties of the monoliths are described in detail as a function of the synthesis parameters. The control over the mesoarchitecture of these silica-surfactant systems in 3D confinement is explained by considering the relative dimensions of the mesostructures with respect to the interstitial space in the latex template, interfacial interactions, entropic effects, and structural frustration.  相似文献   

19.
The ruthenium tetroxide (RuO(4)) oxidation of cyclic ene-carbamates resulted in the endo-cyclic carbon-carbon double bond cleavage to afford the corresponding omega-(N-formylamino)carboxylic acids in good yields. Substituted cyclic ene-carbamates derived from (3R)-3-hydroxypiperidine hydrochloride were converted into the N-Boc 4-aminobutyric acids by utilization of the RuO(4) oxidation as the key step, which were further transformed into (3R)-4-amino-3-hydroxybutyric acid, an important key intermediate for the synthesis of L-carnitine.  相似文献   

20.
A copper catalyst based on a delafossite precursor (CuAlO(2)) displays high activity and extraordinary lifetime in the gas-phase oxidation of HCl to Cl(2), representing a cost-effective alternative to RuO(2)-based catalysts for chlorine recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号