首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For an optimum charge/energy transfer performance of hybrid organic–inorganic colloidal nanocrystals for applications such as photonic devices and solar cells, the determining factors are the distance between the nanocrystal and polymer which greatly depends upon nanocrystal size/nanocrystal ligands. Short chain ligands are preferred to ensure a close contact between the donor and acceptor as a result of the tunnelling probability of the charges and the insulating nature of long alkyl chain molecules. Short distances increase the probability for tunnelling to occur as compared to long distances induced by long alkyl chains of bulky ligands which inhibit tunnelling altogether. The ligands on the as-synthesized nanocrystals can be exchanged for various other ligands to achieve desirable charge/energy transfer properties depending on the bond strength of the ligand on the nanocrystal compared to the replacement ligand. In this work, the constraints involved in post-synthesis ligand exchange process have been evaluated, and these factors have been tuned via wet chemistry to tailor the hybrid material properties via appropriate selection of the nanocrystal capping ligands. It has been found that both oleic acid and oleylamine (OLA)-capped cadmium selenide (CdSe) quantum dots (QDs) as compared with trioctylphosphine oxide (TOPO)-passivated CdSe QDs are of high quality, and they provide better steric stability against coagulation, homogeneity, and photostability to their respective polymer:CdSe nanocomposites. CdSe QDs particularly with OLA capping have relatively smaller surface energies, and thus, lesser quenching capabilities show dominance of photoinduced Forster energy transfer between donors (polymer) and acceptors (CdSe nanocrystals) as compared to charge transfer mechanism as observed in polymer:CdSe (TOPO) composites. It is conjectured that size quantization effects, stereochemical compatibility of ligands (TOPO, oleic acid, and oleyl amine), and polymer MEH-PPV stability greatly influence the photophysics and photochemistry of hybrid polymer–semiconductor nanocomposites.  相似文献   

2.
以巯基乙醇为修饰剂,在水溶液中合成了稳定的CdSe/CdS纳米晶,应用单因素法和多目标单纯形法探索合成条件。通过透射电镜观察所合成的纳米晶的形貌和大小,用紫外-可见吸收光谱和荧光光谱对其光学特性进行了表征。并且以L-色氨酸荧光量子产率0.14为标准,测量了合成的CdSe/CdS纳米晶的荧光量子产率为0.37。  相似文献   

3.
Synthetic phytochelatin-related peptides are used as an organic coat on the surface of colloidal CdSe/ZnS semiconductor nanocrystals synthesized from hydrophobic coordinating trioctyl phosphine oxide (TOPO) solvents. The peptides are designed to bind to the nanocrystals via a C-terminal adhesive domain. This adhesive domain, composed of multiple repeats of cysteines pairs flanked by hydrophobic 3-cyclohexylalanines, is followed by a flexible hydrophilic linker domain to which various bio-affinity tags can be attached. This surface coating chemistry results in small, buffer soluble, monodisperse peptide-coated nanoparticles with high colloidal stability and ensemble photophysical properties similar to those of TOPO-coated nanocrystals. Various peptide coatings are used to modulate the nanocrystal surface properties and to bioactivate the nanoparticles. CdSe/ZnS nanocrystals coated with biotinylated peptides efficiently bind to streptavidin and are specifically targeted to GPI-anchored avidin-CD14 chimeric proteins expressed on the membranes of live HeLa cells. This peptide coating surface chemistry provides a novel approach for the production of biocompatible photoluminescent nanocrystal probes.  相似文献   

4.
As-prepared CdSe nanocrystals were ligand exchanged using tert-butylthiol, which yielded stable CdSe nanocrystal inks in the strong donor solvent tetramethylurea. The efficacy of ligand exchange was probed by thermogravimetric analysis (TGA) and FT-IR spectroscopy. By studying sequential exchanges of tetradecylphosphonic acid and then tert-butylthiol, TGA and energy dispersive X-ray spectroscopic evidence clearly demonstrated that the ligand exchange is essentially quantitative. The resulting tert-butylthiol-exchanged CdSe nanocrystals undergo facile thermal ligand expulsion (≤200 °C), which was studied by TGA-mass spectrometry. Mild thermal treatment of tert-butylthiol-exchanged CdSe nanocrystal films was found to induce loss of quantum confinement (as evidenced by UV-vis spectroscopy) and provided for increased electrochemical photocurrent, electron mobility, and film stability. Pyridine-exchanged CdSe nanocrystals were employed as a control system throughout to demonstrate the beneficial attributes of tert-butylthiol exchange; namely, lower organic content, better colloidal stability, improved interparticle coupling, and vastly increased electrochemical photocurrent response upon illumination.  相似文献   

5.
Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols   总被引:14,自引:0,他引:14  
The photochemical instability of CdSe nanocrystals coated by hydrophilic thiols was studied nondestructively and systematically in water. The results revealed that the photochemical instability of the nanocrystals actually included three distinguishable processes, namely the photocatalytic oxidation of the thiol ligands on the surface of nanocrystals, the photooxidation of the nanocrystals, and the precipitation of the nanocrystals. At first, the thiol ligands on the surface of a nanocrystal were gradually photocatalytically oxidized using the CdSe nanocrystal core as the photocatalyst. This photocatalytic oxidation process was observed as a zero-order reaction in terms of the concentration of the free thiols in the solution. The photogenerated holes in a nanocrystal were trapped onto the thiol ligands bound on the surface of the nanocrystal, which initiated the photooxidation of the ligands and protected the nanocrystal from any photooxidation. After nearly all of the thiol ligands on the surface of the nanocrystals were converted into disulfides, the system underwent several different pathways. If the disulfides were soluble in water, then all of the disulfides fell into the solution at the end of this initial process, and the nanocrystals precipitated out of the solution without much variation over their size and size distribution. When the disulfides were insoluble in water, they likely formed a micelle-like structure around the nanocrystal core and kept it soluble in the solution. In this case, the nanocrystals only precipitated after severe oxidation, which took a long period of time. If the system contained excess free thiol ligands, they replaced the photochemically generated disulfides and maintained the stability and solubility of the nanocrystals. The initiation stage of the photooxidation of CdSe nanocrystals themselves increased as the thickness and packing density of the ligand shell increased. This was explained by considering the ligand shell on the surface of a nanocrystal as the diffusion barrier of the oxygen species from the bulk solution into the interface between the nanocrystal and the surface ligands. Experimental results clearly indicated that the initiation stage of the photooxidation was not caused by the chemical oxidation of the system kept in air under dark conditions or the hydrolysis of the cadmium-thiol bonds on the surface of the nanocrystals, both of which were magnitudes slower than the photocatalytic oxidation of the surface ligands if they occurred at all. The results described in this contribution have already been applied for designing new types of thiol ligands which dramatically improved the photochemical stability of CdSe nanocrystals with a ligand shell that is as thin as approximately 1 nm.  相似文献   

6.
We report about the synthesis and optical properties of a composite metal-insulator-semiconductor nanowire system which consists of a wet-chemically grown silver wire core surrounded by a SiO2 shell of controlled thickness, followed by an outer shell of highly luminescent CdSe nanocrystals. With microphotoluminescence (micro-PL) experiments, we studied the exciton-plasmon interaction in individual nanowires and analyzed the spatially resolved nanocrystal emission for different nanowire length, SiO2-shell thickness, nanocrystal shape, pump power, and emission polarization. For an SiO2 spacer thickness of approximately 15 nm, we observed an efficient excitation of surface plasmons by excitonic emission of CdSe nanocrystals. For nanowire lengths up to approximately 10 microm, the composite metal-insulator-semiconductor nanowires ((Ag)SiO2)CdSe act as a waveguide for 1D-surface plasmons at optical frequencies with efficient photon outcoupling at the nanowire tips, which is promising for efficient exciton-plasmon-photon conversion and surface plasmon guiding on a submicron scale in the visible spectral range.  相似文献   

7.
We report the observation of broad-spectrum fluorescence from single CdSe nanocrystals. Individual semiconductor nanocrystals typically have a narrower emission spectrum than that of an ensemble. However, our experiments show that the ensemble white-light emission observed in ultrasmall CdSe nanocrystals is the result of many single CdSe nanocrystals, each emitting over the entire visible spectrum. These results indicate that each white-light-emitting CdSe nanocrystal contains all the trap states that give rise to the observed white-light emission.  相似文献   

8.
The concept, decoupling doping from nucleation and/or growth, allows us to dope nearly all nanocrystals in a given sample which is indicated by complete quenching of the host emission and bright emission from the dopants at characteristic wavelengths tunable in most parts of the visible window using a ZnSe host. In an extreme case, ZnSe coated MnSe nanocrystals (MnSe:ZnSe) emit similarly as commonly known doped nanocrystals. In comparison with CdSe nanocrystals, these alternative emitters not only are intrinsically less toxic but also show some unexpected and expected advantages: stable against thermal and environmental changes, zero reabsorption, and no Forster energy transfer. In addition to their applications to replace CdSe based nanocrystal emitters, the unique structure and properties of the doped nanocrystals are of interest for studying fundamental issues in the field.  相似文献   

9.
The surface ligands, generation-3 (G3) dendrons, on each semiconductor nanocrystal were globally cross-linked through ring-closing metathesis (RCM). The global cross-linking of the dendron ligands sealed each nanocrystal in a dendron box, which yielded box-nanocrystals. Although the dendron ligands coated CdSe nanocrystals (CdSe dendron-nanocrystals) were already quite stable, the stability of CdSe box-nanocrystals against chemical, photochemical, and thermal treatments were dramatically improved in comparison to that of the original dendron-nanocrystals. Furthermore, the box structure of the ligands monolayer coupled with the stable inorganic CdSe/CdS core/shell nanocrystals resulted in a class of extremely stable nanocrystal/ligands complexes. The band edge photoluminescence of the core/shell dendron-nanocrystals and box-nanocrystals were partially remained, and could be further brightened through controlled chemical oxidation or photooxidation. Practically, the stability of the box-nanocrystals is sufficient for most fundamental studies and technical applications. The box-nanocrystals may represent a general solution for the commonly encountered instability for many types of colloidal nanocrystals. The size distribution of the empty dendron boxes formed by the dissolution of the inorganic nanocrystals in concentrated HCl was very narrow. The empty boxes as new types of polymer capsules are soluble in solution, mesoporous, and with a very thin but stable peripheral. Those nanometer-sized cavities should be of interest for many purposes in the field of solution host-guest chemistry.  相似文献   

10.
The influence of temperature and applied magnetic fields on photoluminescence (PL) emission and electronic energy transfer (ET) of both isolated and aggregated CdSe nanocrystals was investigated. Following 400-nm excitation, temperature-dependent, intensity-integrated and energy-resolved PL measurements were used to quantify the emission wavelength and amplitude of isolated CdSe nanocrystals. The results indicated an approximately three-fold increase in PL intensity upon decreasing the temperature from 300 K to 6 K; this was attributed to a reduction of charge carrier access to nanocrystal surface trap states and suppression of thermal loss channels. Temperature-dependent PL measurements of aggregated CdSe nanocrystals, which included both energy-donating and -accepting particles, were analyzed using a modified version of F?rster theory. Temperature-dependent ET efficiency increased from 0.55 to 0.75 upon decreasing the sample temperature from 225 K to 6 K, and the ET data contained the same trend observed for the PL of isolated nanoclusters. The application of magnetic fields to increase nanocrystal ET efficiency was studied using magneto-photoluminescence measurements recorded at a sample temperature of 1.6 K. We demonstrated that the exciton fine structure population of the donor was varied using applied magnetic fields, which in turn dictated the PL yield and the resultant ET efficiency of the CdSe nanocrystal aggregate system. The experimental data indicated an ET efficiency enhancement of approximately 7%, which was limited by the random orientation of the spherical nanocrystals in the thin film.  相似文献   

11.
The 1,2,3,4-thiatriazole-5-thiolate anion (TTT(-)) was found to be a strongly binding ligand for CdSe nanocrystals, quantitatively exchanging various long-chain ligands to yield stable colloidal suspensions in common polar solvents. The TTT(-) ligand thermolyzes at <100 °C to produce thiocyanate in situ, resulting in reduced quantum confinement in nanocrystal films. CdSe(TTT) possesses far higher colloidal stability than CdSe(SCN), and that, together with the facile synthesis of TTT(-), implies that this is a useful ligand for nanocrystal applications as a masked thiocyanate.  相似文献   

12.
A micro-reactor was utilized for continuous and controlled CdSe nanocrystal preparation. Effects of reaction conditions on optical properties of the nanocrystals were investigated; in this current system, rapid and exact temperature control of the micro-reactor was beneficial for controlling particle diameter and reproducible preparation of particles; additional effort was made towards narrower particle-size distributions.  相似文献   

13.
功能性CdSe纳米晶的合成及自组装膜光致发光   总被引:2,自引:0,他引:2  
以巯基丙酸(RSH)为稳定剂,采用湿化学法合成了功能性CdSe纳米晶,用XRD、TEM表征其粒度和形貌,用UV-Vis监测成核及成膜过程。结果表明:制得的CdSe近似呈球形,平均粒径为48 nm。利用静电自组装法层层组装成CdSe-PDDA复合膜,荧光测试表明:所得CdSe纳米晶自组装复合膜(CdSe-PDDA)的荧光强度随着组装层数的增加而呈线性增强,该复合膜在582 nm附近有黄绿色荧光发射。  相似文献   

14.
We have synthesized CdSe nanocrystals (NCs) in sizes from 2.2 to 5.1 nm passivated with hydrophobic trioctylphosphine oxide (TOPO) in combination trioctylphosphine (TOP) or tributylphosphine (TBP) to obtain particles of the type CdSe/TOPO/TOP or CdSe/TOPO/TBP. These NCs were then dispersed in aqueous solution of ionic or non-ionic surfactants (such as stearate, oleic acid, Tween) using a biphase (water and chloroform or hexane) transfer method. It is found that both the structure of the surfactant and the native surface of the ligand govern the coating of the NCs with surfactants. More specifically, the hydrophobicity-hydrophilicity balance of the surfactant regulates the coating efficacy, thereby transferring the NC from the organic to the aqueous phase. The type of ligand on the NCs and the kind of coating surfactant also affect photoluminescence (PL). The ratio of PL and absorbance unit (defined as PL per 0.1 AU) was implemented as a tool to monitor changes in PL intensity and wavelength as a function of size, coatings and surface defects. Finally, the distribution of CdSe nanocrystals between pseudophases in cloud point extraction was discussed based on experimental results. It was concluded that the size of CdSe nanocrystal present in an appropriate pseudophase is correlated with the way in which the non-ionic surfactant coats CdSe nanocrystals.
Figure
Coating of CdSe semiconductor nanocrystals with surfactants impacts nanocrystals’ spectral features. Absorbance of first exciton absorption band was used to estimate ability of surfactant to disperse CdSe nanocrystals. Photoluminescence (PL) intensity and position of PL band were analysed in terms of nanocrystal’s surface phenomena via surfactants applied for coating.  相似文献   

15.
十六烷基胺稳定的CdSe纳米晶体的合成与表征   总被引:2,自引:0,他引:2  
用CdO通过高温化学方法制备了具有高发光特性的CdSe胶体纳米晶.通过改变配体十六烷基胺在反应体系中的含量,合成了3种不同粒径的CdSe纳米晶.利用TEM、XRD和光谱等手段对合成出来的CdSe纳米晶的形貌结构和发光特性进行了表征.结果表明,随着十六烷基胺在反应体系中量的增多,CdSe纳米晶的粒径增大.通过调整十六烷基胺在反应体系中的量可以方便地控制纳米晶的尺寸.  相似文献   

16.
We described a facile method for preparing CdSe/CdS/ZnS core/shell/shell nanocrystals from air-stable single source precursors.The single source precursors of cadmium ethylxanthate and zinc ethylxanthate were used to form CdS and ZnS shell layers in octadecene.An efficient modification of CdSe/CdS/ZnS nanocrystals was subsequently performed to obtain hydrophilic nanocrystal fluorophores with good stability in a pH range of 1.6-10.  相似文献   

17.
Triplet energy transfer from inorganic nanocrystals to molecular acceptors has attracted strong attention for high‐efficiency photon upconversion. Here we study this problem using CsPbBr3 and CdSe nanocrystals as triplet donors and carboxylated anthracene isomers as acceptors. We find that the position of the carboxyl anchoring group on the molecule dictates the donor‐acceptor coupling to be either through‐bond or through‐space, while the relative strength of the two coupling pathways is controlled by the wavefunction leakage of nanocrystals that can be quantitatively tuned by nanocrystal sizes or shell thicknesses. By simultaneously engineering molecular geometry and nanocrystal wavefunction, energy transfer and photon upconversion efficiencies of a nanocrystal/molecule system can be improved by orders of magnitude.  相似文献   

18.
A series of colloidal transition-metal-doped chalcogenide semiconductor nanocrystals (TM2+:CdSe, TM2+:CdS, etc.) has been prepared by thermal decomposition of inorganic cluster precursors. It is shown through extensive spectroscopic and structural characterization that the nanocrystals prepared following literature procedures for synthesis of TM2+:CdSe nanocrystals actually possess an unintended CdSe/TM2+:CdS core/shell morphology. The conditions required for successful formation of TM2+:CdSe and TM2+:CdS by cluster decomposition have been determined. Magneto-optical and photoluminescence spectroscopic results for this series of doped nanocrystals reveal major physical consequences of dopant localization within the shell and demonstrate the capacity to engineer dopant-carrier exchange interactions via core/shell doping strategies. The results presented here illustrate some of the remarkable and unexpected complexities that can arise in nanocrystal doping chemistries and emphasize the need for meticulous characterization to avoid false positives.  相似文献   

19.
The water-soluble L-cysteine-modified CdSe/CdS core/shell nanocrystals (expressed as CdSe/CdS/Cys nanocrystals) have been synthesized in aqueous by using L-cysteine as stabilizer. The size, shape, component and spectral property of CdSe/CdS/Cys nanocrystals were characterized by high-resolution transmission electron microscope (HRTEM), energy dispersive X-ray fluorescence (EDX), infrared spectrum (IR) and photoluminescence (PL). The results showed that the spherical CdSe/CdS/Cys nanocrystals with an average diameter of 2.3 nm have favorable fluorescent property, theirs photostability and fluorescence intensity are enhanced greatly after overcoating with CdS. The cysteine modified on the surface of core/shell CdSe/CdS nanocrystals renders the nanocrystals water-soluble and biocompatible. Based on the fluorescence quenching of the nanocrystals in the presence of calf thymus deoxyribonucleic acid (ct-DNA), a fluorescence quenching method has been developed for the determination of ct-DNA by using the nanocrystals as a novel fluorescence probe. The pH value of the system was selected at pH 7.4, with excitation and emission wavelength at 380 and 522 nm, respectively. Under the optimal conditions, the fluorescence quenching intensity of the system is linear with the concentration of ct-DNA in the range of 0.1-3.5 microg/mL (r=0.9987). The detection limit is 0.06 microg/mL. And two synthetic samples were analyzed satisfactorily.  相似文献   

20.
Here we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. The inner CdTe/CdS and CdTe/CdSe heterostructures have type-I, quasi-type-II, or type-II band offsets depending on the core size and shell thickness, and the outer CdS/ZnS and CdSe/ZnS structures have type-I band offsets. The emission maxima of the assembled heterostructures were found to be dependent on the CdTe core size, with a wider range of spectral tunability observed for the smaller cores. Because of encapsulation effects, the formation of successive shells resulted in a considerable increase in the photoluminescence quantum yield; however, identifying optimal shell thicknesses was required to achieve the maximum quantum yield. Photoluminescence lifetime measurements revealed that the decrease in the quantum yield of thick-shell nanocrystals was caused by a substantial decrease in the radiative rate constant. By tuning the diameter of the core and the thickness of each shell, a broad range of high quantum yield (up to 45%) nanocrystal heterostructures with emission ranging from visible to NIR wavelengths (500-730 nm) were obtained. This versatile route to engineering the optical properties of nanocrystal heterostructures will provide new opportunities for applications in bioimaging and biolabeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号