首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for reducing systems of partial differential equations to corresponding systems of ordinary differential equations is proposed. A system of equations describing two-dimensional, cylindrical, and spherical flows of a polytropic gas; a system of dimensionless Stokes equations for the dynamics of a viscous incompressible fluid; a system of Maxwell’s equations for vacuum; and a system of gas dynamics equations in cylindrical coordinates are studied. It is shown how this approach can be used for solving certain problems (shockless compression, turbulence, etc.).  相似文献   

2.
Based on computerized symbolic computation, modified extended tanh-method for constructing multiple travelling wave solutions of nonlinear evolution equations is presented and implemented in a computer algebraic system. Applying this method, with the aid of Maple, we consider some nonlinear evolution equations in mathematical physics such as the nonlinear partial differential equation, nonlinear Fisher-type equation, ZK-BBM equation, generalized Burgers–Fisher equation and Drinfeld–Sokolov system. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods.  相似文献   

3.
In this paper, a new method for finding the approximate solution of a second order nonlinear partial differential equation is introduced. In this method the problem is transformed to an equivalent optimization problem. Then, by considering it as a distributed parameter control system, the theory of measure is used for obtaining the approximate solution of the original problem.  相似文献   

4.
In this article, an efficient hybrid method has been developed for solving some special type of nonlinear partial differential equations. Hybrid method is based on tanh–coth method, quasilinearization technique and Haar wavelet method. Nonlinear partial differential equations have been converted into a nonlinear ordinary differential equation by choosing some suitable variable transformations. Quasilinearization technique is used to linearize the nonlinear ordinary differential equation and then the Haar wavelet method is applied to linearized ordinary differential equation. A tanh–coth method has been used to obtain the exact solutions of nonlinear ordinary differential equations. It is easier to handle nonlinear ordinary differential equations in comparison to nonlinear partial differential equations. A distinct feature of the proposed method is their simple applicability in a variety of two‐ and three‐dimensional nonlinear partial differential equations. Numerical examples show better accuracy of the proposed method as compared with the methods described in past. Error analysis and stability of the proposed method have been discussed.  相似文献   

5.
In this paper a mesh-free method for the treatment of time-independent and time-dependent nonlinear PDEs of second order is presented. The basic idea of the discretization is a local least-squares approximation, similar to the moving least-squares approach in data approximation. However, in our approach the PDE is incorporated as an additional minimization constraint. The discretization leads to a fixed-point problem, which is solved by iteration. Because of the local nature of the method only small dimensional matrix inversions have to be done. The approximation error of the discretization—even on unstructured meshes—is comparable to respective versions of finite elements. As a by-product the method provides an a posteriori measure for the local approximation error. We discuss implementational aspects and present numerical simulations.  相似文献   

6.
Inverse coefficient problems are considered for the mathematical models of sorption dynamics and heat conduction. Iterative methods proposed for solving these inverse problems transform a supplementary condition into an integral relationship containing the unknown coefficient. Combined with the original boundary-value problem, this integral relationship makes it possible to construct an iterative process. A priori representation of the unknown nonlinear coefficients in parametric form is not required. Results of computational experiments are reported.Translated from Matematicheskie Modeli Estestvoznaniya, Published by Moscow University, Moscow, 1995, pp. 142–149.  相似文献   

7.
In this work successive differentiation method is applied to solve highly nonlinear partial differential equations (PDEs) such as Benjamin–Bona–Mahony equation, Burger's equation, Fornberg–Whitham equation, and Gardner equation. To show the efficacy of this new technique, figures have been incorporated to compare exact solution and results of this method. Wave variable is used to convert the highly nonlinear PDE into ordinary differential equation with order reduction. Then successive differentiation method is utilized to obtain the numerical solution of considered PDEs in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we shall use the variational iteration method to solve some problems of non-linear partial differential equations (PDEs) such as the combined KdV–MKdV equation and Camassa–Holm equation. The variational iteration method is superior than the other non-linear methods, such as the perturbation methods where this method does not depend on small parameters, such that it can fined wide application in non-linear problems without linearization or small perturbation. In this method, the problems are initially approximated with possible unknowns, then a correction functional is constructed by a general Lagrange multiplier, which can be identified optimally via the variational theory.  相似文献   

9.
Linear systems of partial differential equations with constant coefficient matrices are considered. The matrices multiplying the derivatives of the sought vector function are assumed to be singular. The structure of solutions to such systems is examined. The numerical solution of initialboundary value problems for such equations by applying implicit difference schemes is discussed.  相似文献   

10.
《Applied Mathematical Modelling》2014,38(5-6):1775-1787
In this paper, we propose a new approach of the generalized differential transform method (GDTM) for solving nonlinear fractional differential equations. In GDTM, it is a key to derive a recurrence relation of generalized differential transform (GDT) associated with the solution in the given fractional equation. However, the recurrence relations of complex nonlinear functions such as exponential, logarithmic and trigonometry functions have not been derived before in GDTM. We propose new algorithms to construct the recurrence relations of complex nonlinear functions and apply the GDTM with the proposed algorithms to solve nonlinear fractional differential equations. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed technique is robust and accurate for solving fractional differential equations.  相似文献   

11.
12.
13.
14.
The method of characteristics has played a very important role in mathematical physics. Previously, it has been employed to solve the initial value problem for partial differential equations of first order. In this work, we propose a new fractional characteristic method and use it to solve some fractional partial differential equations.  相似文献   

15.
A unified approach is presented for proving the local, uniform and quadratic convergence of the approximate solutions and a-posteriori error bounds obtained by Newton's method for systems of nonlinear ordinary or partial differential equations satisfying an inverse-positive property. An important step is to show that, at each iteration, the linearized problem is inverse-positive. Many classes of problems are shown to satisfy this property. The convergence proofs depend crucially on an error bound derived previously by Rosen and the author for quasilinear elliptic, parabolic and hyperbolic problems.  相似文献   

16.
Certain nonlinear partial differential equations (NPDEs) can be decomposed into several more simple equations, which can possess enough general analytic solutions. This approach and some interesting kinds of solutions (obtained by using this method) of some NPDEs in physics will be presented. The presented approach is somewhat similar to the homogeneous balance method, however they are different.  相似文献   

17.
Incremental unknowns for solving partial differential equations   总被引:1,自引:0,他引:1  
Summary Incremental unknowns have been proposed in [T] as a method to approximate fractal attractors by using finite difference approximations of evolution equations. In the case of linear elliptic problems, the utilization of incremental unknown methods provides a new way for solving such problems using several levels of discretization; the method is similar but different from the classical multigrid method.In this article we describe the application of incremental unknowns for solving Laplace equations in dimensions one and two. We provide theoretical results concerning two-level approximations and we report on numerical tests done with multi-level approximations.  相似文献   

18.
We use similar functional analytic methods to solve (a) a fully nonlinear second order elliptic equation, (b) a Hamilton-Jacobi equation, and (c) a functional/partial differential equation from plasma physics. The technique in each case is to approximate by the solutions of simpler problems, and then to pass to limits using a modification of G. Minty’s device to the spaceL . Alfred P. Sloan fellow 1979–1981. Supported in part by NSF grant MCS 77-01952.  相似文献   

19.
Fractional calculus is an extension of derivatives and integrals to non-integer orders, and a partial differential equation involving the fractional calculus operators is called the fractional PDE. They have many applications in science and engineering. However not only the analytical solution existed for a limited number of cases, but also the numerical methods are very complicated and difficult. In this paper, we newly establish the simulation method based on the operational matrices of the orthogonal functions. We formulate the operational matrix of integration in a unified framework. By using the operational matrix of integration, we propose a new numerical method for linear fractional partial differential equation solving. In the method, we (1) use the Haar wavelet; (2) establish a Lyapunov-type matrix equation; and (3) obtain the algebraic equations suitable for computer programming. Two examples are given to demonstrate the simplicity, clarity and powerfulness of the new method.  相似文献   

20.
In this work, a diagonal splitting idea is presented for solving linear systems of ordinary differential equations. The resulting methods are specially efficient for solving systems which have arisen from semidiscretization of parabolic partial differential equations (PDEs). Unconditional stability of methods for heat equation and advection–diffusion equation is shown in maximum norm. Generalization of the methods in higher dimensions is discussed. Some illustrative examples are presented to show efficiency of the new methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号