共查询到20条相似文献,搜索用时 31 毫秒
1.
《Communications in Nonlinear Science & Numerical Simulation》2011,16(2):1044-1051
In this paper, based on a stability theorem proved for linear fractional-order systems, a scheme for robust synchronization of two perturbed fractional-order Chen systems is proposed. In the proposed scheme, both master and slave systems are considered to be involved with external disturbances having unknown values. It is analytically shown that any set of bounded external disturbances can be damped by the proposed method, where synchronization error will be forced and then kept inside a ball around the origin. Since during the design procedure the radius of this ball could be easily chosen by the designer, the synchronization can be done with any desired accuracy. The proposed method can be easily extended to synchronize other fractional-order chaotic systems. Numerical simulation results are presented to show the effectiveness of the proposed method. 相似文献
2.
Wenlin Li Xiuqin Chen 《Communications in Nonlinear Science & Numerical Simulation》2009,14(7):3100-3107
This paper investigates the chaos synchronization problem for drive-response Chua’s systems coupled with dead-zone nonlinear input. An estimator of unknown nonlinear term is proposed. Using the sliding mode control technique and the estimate of unknown nonlinear term, a novel variable structure controller which guarantees projective synchronization even when the dead-zone nonlinearity is present. Computer simulations are provided to demonstrate the effectiveness of the proposed synchronization scheme. 相似文献
3.
Chuan-Ke Zhang L. Jiang Yong He Q.H. Wu Min Wu 《Communications in Nonlinear Science & Numerical Simulation》2013,18(10):2743-2751
This paper presents a new method for the asymptotical synchronization of two identical chaotic Lur’e systems using sampling control. The method is based on a new Lyapunov–Krasovskii functional (LKF) in the framework of an input delay method. Compared with existing works, the new LKF makes full use of the information on the nonlinear part of the system and introduces a novel term, which waives the common positive requirement of each LKF term to guarantee the positive of the whole LKF. A typical Chua’s circuit is given to verify the effectiveness of the proposed method. 相似文献
4.
In this paper, the issue of finite-time lag synchronization of coupled reaction–diffusion systems with time-varying delay (CRDSTD) is considered. A periodically intermittent controller is designed such that drive system and corresponding response system can achieve finite-time lag synchronization. By using graph theory and Lyapunov method, two sufficient criteria are presented to guarantee the finite-time lag synchronization of CRDSTD. Moreover, the time of achieving lag synchronization of CRDSTD is estimated. Finally, a numerical example is given to show the effectiveness of the proposed results. 相似文献
5.
In this paper two adaptive sliding mode controls for synchronizing the state trajectories of the Genesio–Tesi system with unknown parameters and external disturbance are proposed. A switching surface is introduced and based on this switching surface, two adaptive sliding mode control schemes are presented to guarantee the occurrence of the sliding motion. The stability and robustness of the two proposed schemes are proved using Lyapunov stability theory. The effectiveness of our introduced schemes is provided by numerical simulations. 相似文献
6.
《Communications in Nonlinear Science & Numerical Simulation》2014,19(9):3298-3312
This paper is concerned with the global exponential synchronization problem of two identical nonlinear time-delay Lur’e systems via delayed impulsive control. Some novel impulsive synchronization criteria are obtained by introducing a discontinuous Lyapunov function and by using the Lyapunov–Razumikhin technique, which are expressed in forms of linear matrix inequalities. The derived criteria reveal the effects of impulsive input delays and impulsive intervals on the stability of synchronization error systems. Then, sufficient conditions on the existence of a delayed impulsive controller are derived by employing these newly-obtained synchronization criteria. Additionally, some synchronization criteria for two identical time-delay Lur’e systems with impulsive effects are presented by using delayed continuous feedback control. The synchronization criteria via delayed continuous feedback control can deal with the case when the impulsive control strategy fails to synchronize two identical impulsive time-delay Lur’e systems. Three numerical examples are provided to illustrate the efficiency of the obtained results. 相似文献
7.
This paper presents a new approach for solving the optimal control problem of linear time-delay systems with a quadratic cost functional. In this approach, a method of successive substitution is employed to convert the original time-delay optimal control problem into a sequence of linear time-invariant ordinary differential equations (ODEs) without delay and advance terms. The obtained optimal control consists of a linear state feedback term and a forward term. The feedback term is determined by solving a matrix Riccati differential equation. The forward term is an infinite sum of adjoint vectors, which can be obtained by solving recursively the above-mentioned sequence of linear non-delay ODEs. A fast-converging iterative algorithm for this purpose is presented which provides a promising possible reduction of computational efforts. Numerical examples demonstrating the efficiency, simplicity and high accuracy of the suggested technique have been included. Simulation results reveal that just a few iterations of the proposed algorithm are required to find an accurate enough feedforward–feedback suboptimal control. 相似文献
8.
9.
《Communications in Nonlinear Science & Numerical Simulation》2011,16(2):975-986
In this work, stability analysis of the fractional-order modified Autonomous Van der Pol–Duffing (MAVPD) circuit is studied using the fractional Routh–Hurwitz criteria. A necessary condition for this system to remain chaotic is obtained. It is found that chaos exists in this system with order less than 3. Furthermore, the fractional Routh–Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh–Hurwitz conditions and using specific choice of linear controllers, it is shown that the fractional-order MAVPD system is controlled to its equilibrium points; however, its integer-order counterpart is not controlled. Moreover, chaos synchronization of MAVPD system is found only in the fractional-order case when using a specific choice of nonlinear control functions. This shows the effect of fractional order on chaos control and synchronization. Synchronization is also achieved using the unidirectional linear error feedback coupling approach. Numerical results show the effectiveness of the theoretical analysis. 相似文献
10.
Sajad Jafari S.M. Reza H. Golpayegani Mansour R. Darabad 《Communications in Nonlinear Science & Numerical Simulation》2013,18(3):811-814
This paper comments on the recently published work related to parameter identification of fractional-order chaotic systems [1]. In this note, it is shown that according to the sensitivity issues of chaotic systems to their initial conditions, the criteria for the cost function to be acceptable are not satisfied. 相似文献
11.
The state-delay is always existent in the practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computer. In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sample-data representation of a nonlinear system with constant state time-delay. The mathematical expressions of the discretization scheme are presented and the effect of the time-discretization method on equilibrium properties of nonlinear control system with state time-delay is examined. The proposed scheme provides a finite-dimensional representation for nonlinear systems with state time-delay enabling existing controller design techniques to be applied to them. The performance of the proposed discretization procedure is evaluated using a nonlinear system. For this nonlinear system, various sampling rates and time-delay values are considered. 相似文献
12.
This work investigates the adaptive Q–S synchronization of coupled chaotic (or hyper-chaotic) systems with stochastic perturbation, delay and unknown parameters. The sufficient conditions for achieving Q–S synchronization of two stochastic chaotic systems are derived based on the invariance principle of stochastic differential equation. By the adaptive control technique, the control laws and the corresponding parameter update laws are proposed such that the stochastic Q–S synchronization of non-identical chaotic (or hyper-chaotic) systems is to be obtained. Finally, two illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme. 相似文献
13.
This paper aims at synchronization and anti-synchronization between Lu chaotic system, a member of unified chaotic system, and recently developed Bhalekar–Gejji chaotic system, a system which cannot be derived from the member of unified chaotic system. These synchronization and anti-synchronization have been achieved by using nonlinear active control since the parameters of both the systems are known. Lyapunov stability theory is used and required condition is derived to ensure the stability of error dynamics. Controller is designed by using the sum of relevant variables in chaotic systems. Simulation results suggest that proposed scheme is working satisfactorily. 相似文献
14.
15.
《Chaos, solitons, and fractals》2001,12(11):2087-2093
In this paper we discuss the problem of optimal control for the steady state of Lotka–Volterra model. The conditions of the asymptotic stability of the steady state of this model are used to obtain the optimal control functions. In such study, the optimal Lyapunov function is used. The general solution of the equations of the perturbed state is obtained as a function of time. In addition, the optimal control is also applied to achieve the state synchronization of two identical Lotka–Volterra systems. Graphical and numerical simulation studies of the obtained results are presented. 相似文献
16.
We design a quantized sampled-data controller for synchronization of delayed chaotic Lur’e systems. A new approach, extended Wirtinger-inequality-based Lyapunov–Krasovskii functional, is firstly proposed. This approach grasps more sampling information by introducing more free matrices in comparison with some existing methods. Using the system information at the dynamic partitioning point, a zero equality is formulated to fully utilize the inner sampling information. Based on the new approach and zero equality, some novel synchronization criteria are established. In the meantime, the desired quantized sampled-data control gain is obtained with larger sampling period than those in the existing works. Finally, two numerical examples illustrate the merits of the method. 相似文献
17.
《Communications in Nonlinear Science & Numerical Simulation》2010,15(12):4100-4113
In this paper, we consider the problem of synchronizing a master–slave chaotic system in the sampled-data setting. We consider both the intermittent coupling and continuous coupling cases. We use an Euler approximation technique to discretize a continuous-time chaotic oscillator containing a continuous nonlinear function. Next, we formulate the problem of global asymptotic synchronization of the sampled-data master–slave chaotic system as equivalent to the states of a corresponding error system asymptotically converging to zero for arbitrary initial conditions. We begin by developing a pulse-based intermittent control strategy for chaos synchronization. Using the discrete-time Lyapunov stability theory and the linear matrix inequality (LMI) framework, we construct a state feedback periodic pulse control law which yields global asymptotic synchronization of the sampled-data master–slave chaotic system for arbitrary initial conditions. We obtain a continuously coupled sampled-data feedback control law as a special case of the pulse-based feedback control. Finally, we provide experimental validation of our results by implementing, on a set of microcontrollers endowed with RF communication capability, a sampled-data master–slave chaotic system based on Chua’s circuit. 相似文献
18.
19.
Yan-Qiu Che Jiang Wang Kai-Ming Tsang Wai-Lok Chan 《Nonlinear Analysis: Real World Applications》2010,11(2):1096-1104
This paper presents an adaptive neural network (NN) based sliding mode control for unidirectional synchronization of Hindmarsh–Rose (HR) neurons in a master–slave configuration. We first give the dynamics of single HR neuron which may exhibit spike-burst chaotic behaviors. Then we formulate the problem of unidirectional synchronization control of two HR neurons and propose a NN based sliding mode controller. The controller consists of two simple radial basis function (RBF) NNs which are used to approximate the desired sliding mode controller and the uncertain nonlinear part of the error dynamical system, respectively. The control scheme is robust to the uncertainties such as approximate errors, ionic channel noise and external disturbances. The simulation results demonstrate the validity of the proposed control method. 相似文献
20.
In this article the local stability of the Rabinovich–Fabrikant (R–F) chaotic system with fractional order time derivative is analyzed using fractional Routh–Hurwitz stability criterion. Feedback control method is used to control chaos in the considered fractional order system and after controlling the chaos the authors have introduced the synchronization between fractional order non-chaotic R–F system and the chaotic R–F system at various equilibrium points. The fractional derivative is described in the Caputo sense. Numerical simulation results which are carried out using Adams–Boshforth–Moulton method show that the method is effective and reliable for synchronizing the systems. 相似文献