首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetohydrodynamic (MHD) peristaltic flow of a Carreau fluid in a channel with different wave forms are analyzed in this investigation. The flow analysis is conducted in the presence of an induced magnetic field. Long wavelength approach is adopted. Mathematical expressions of stream function, magnetic force function and an axial induced magnetic field are constructed. Pressure rise and pumping phenomena are described.  相似文献   

2.
Peristaltic transport in a two-dimensional non-uniform tube filled with Herschel–Bulkley fluid is studied under the assumptions of long wavelength and low Reynold number. The fluid flow is investigated in the wave frame of reference moving with the velocity of the peristaltic wave. Exact solution for the velocity field, the temperature profile, the stream functions and the pressure gradient are obtained. The physical behavior of τ, n, α and on the pressure rise versus flow rate are discussed through graphs. At the end of the article trapping phenomena for Herschel–Bulkley and also for Newtonian, Bingham and power law (which are the special cases of Herschel–Bulkley fluid) fluid are discussed.  相似文献   

3.
This paper looks at the influence of the induced magnetic field on peristaltic transport through a uniform infinite annulus filled with an incompressible viscous and Newtonian fluid. The present theoretical model may be considered as mathematical representation to the movement of conductive physiological fluids in the presence of the endoscope tube (or catheter tube). The inner tube is uniform, rigid, while the outer tube has a sinusoidal wave traveling down its wall. The flow analysis has been developed for low Reynolds number and long wave length approximation. Exact solutions have been established for the axial velocity, stream function, axial induced magnetic field, current distribution and the magnetic force function. The effects of pertinent parameters on the pressure rise and frictional forces on the inner and outer tubes are investigated by means of numerical integrations, also we study the effect of these parameters on the pressure gradient, axial induced magnetic field and current distribution. The phenomena of trapping is further discussed.  相似文献   

4.
The peristaltic flow of a Jeffrey fluid in a vertical porous stratum with heat transfer is studied under long wavelength and low Reynolds number assumptions. The nonlinear governing equations are solved using perturbation technique. The expressions for velocity, temperature and the pressure rise per one wave length are determined. The effects of different parameters on the velocity, the temperature and the pumping characteristics are discussed. It is observed that the effects of the Jeffrey number λ1, the Grashof number Gr, the perturbation parameter N = EcPr, and the peristaltic wall deformation parameter ϕ are the strongest on the trapping bolus phenomenon. The results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear-thinning reduces the wall shear stress.  相似文献   

5.
In the present investigation we have discussed the heat and mass transfer analysis on peristaltic flow of a third order fluid in a diverging tube. The assumption of low Reynolds number and long wavelength have been used to simplify the complicated problem into relatively simple problem. Two types of analytical solutions named as perturbation solution and solution have been evaluated for velocity, temperature and concentration field. The expression for pressure rise and frictional forces are calculated using numerical integration. In addition, the quantitative effects of pressure rise, frictional forces, temperature and concentration profile are displayed graphically. Trapping phenomena is also discussed at the end of the article.  相似文献   

6.
In this article, we carry out the effect of an induced magnetic field on the peristaltic transport of an incompressible conducting third order fluid in a symmetric channel. The flow analysis has been developed for low Reynolds number and long wave length approximation. Analytical solutions have been established for the axial velocity, stream function, magnetic force function, and axial‐induced magnetic field. The effects of pertinent parameters on the pressure rise per wavelength are investigated by using numerical integration. Besides this, we study the effect of these parameters on the pressure gradient and axial induced magnetic field. The phenomena of trapping and pumping are also discussed. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

7.
This paper concern with the peristaltic transport of MHD Newtonian fluid in a symmetric, two dimensional channel with variable viscosity under the influence of heat transfer analysis. For the formulation of the problem long wave length and low Reynold number assumption is taken into account. An exact solution is presented for the temperature field. The velocity field for the model of interest is solved by Adomian decomposition method. Numerical illustrations that show the physical effects and the pertinent features are investigated at the end of the paper.  相似文献   

8.
This work is aimed at describing the heat transfer on the peristaltic motion in a porous space. An incompressible and magnetohydrodynamic (MHD) viscous fluid is taken in an asymmetrical channel. Expressions of dimensionless stream function and temperature are obtained analytically by employing long wavelength and low Reynolds number assumptions. The influence of various parameters of interest is seen through graphs on pumping and trapping phenomena and temperature profile.  相似文献   

9.
Two asymptotic methods based upon Stokes and long-wave approximations are developed for the study of transporting a heat-conducting fluid through a flexible tube by peristaltic motion of the tube well. The asymptotic methods are justified rigorously and the existence of a unique generalized solution of the governing equations is proved if a condition in terms of the Reynolds number and other nondimensional parameters is satisfied.  相似文献   

10.
This paper is devoted to the study of peristaltic flow of a fourth grade fluid in a channel under the considerations of long wavelength and low-Reynolds number. The flow is examined in a wave frame of reference moving with velocity of the wave. The analytic solution has been obtained in the form of a stream function from which the axial velocity and axial pressure gradient have been derived. The results for the pressure rise and frictional force per wavelength have also been computed numerically. The computational results indicate that the pressure rise and frictional force per wavelength are increased in case of non-Newtonian fluid when compared with Newtonian fluid. Several graphs of physical interest are displayed and discussed.  相似文献   

11.
The elastic effect of the flexible walls is analyzed on the peristaltic motion of Maxwell fluid in a channel with heat transfer. An incompressible and magnetohydrodynamic (MHD) fluid fills the porous space. The series solution of the modeled problem is derived by considering small wave number. The influence of pertinent parameters is shown and discussed with the help of graphs. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

12.
The effects of variable temperature dependent viscosity on peristaltic flow of Newtonian fluid in an annulus has been investigated with long wave length approximations. A regular perturbation method has been used to obtain explicit form for the velocity, temperature and relation between flow rate and pressure gradient. The expression for the pressure rise, friction force, velocity and temperature were plotted for different values of variable viscosity parameter β, radius ratio, amplitude ratio ?, heat absorption parameter β1, and force convection parameter Gr. It is found that the pressure rise decrease as the viscosity parameter β increases and increases as the radius ratio as ? increases and β decreases.  相似文献   

13.
This article describes the effects of heat and mass transfer on the magnetohydrodynamic (MHD) peristaltic flow in a planar channel with compliant walls. An incompressible Maxwell fluid occupies a porous space. The mathematical formulation is based upon the modified Darcy’s law. The analytic treatment of the solution is given by choosing a small wave number. The expressions of stream function, temperature distribution, concentration field and heat coefficient are constructed. The variations of several interesting parameters are discussed by sketching plots.  相似文献   

14.
The present paper investigates phenomena brought about into the classic peristaltic mechanism by inclusion of non-Newtonian effects through a porous space in a channel. The peristaltic motion of a second-order fluid through a porous medium was studied for the case of a planar channel with harmonically undulating extensible walls. The system of the governing nonlinear PDE is solved by using the perturbation method to second-order in dimensionless wavenumber. The analytic solution has been obtained in the form of a stream function from which the axial pressure gradient has been derived. The flow is investigated in a wave frame of reference moving with velocity of the wave. Numerical calculations are carried out for the pressure rise and frictional force. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail.  相似文献   

15.
Slip and heat transfer effects on the peristaltic flow in an asymmetric channel have been examined in this paper. The closed form solutions of momentum and energy equations are obtained for long wavelength and low Reynolds number approximations. Pumping and trapping phenomena are discussed by numerical integration. The variations of velocity and thermal slip parameters are particularly observed. Comparison of different wave forms for symmetric case is presented.  相似文献   

16.
Zusammenfassung Der Einfluss eines magnetischen Feldes auf die Wärmeübertragung in einer ausgebildeten laminaren Strömung einer elektrisch leitenden, wärmestrahlenden, zähen und inkompressiblen Flüssigkeit zwischen zwei unendlichen parallelen Platten wird untersucht. Ein konstantes äusseres magnetisches Feld wirkt in der Richtung senkrecht zu den Platten und der Strömungsrichtung. Die auf einer konstanten Temperatur gehaltenen Kanalwände sollen Wärme ausstrahlen und diffus reflektieren.Die Temperaturverläufe wurden für einige Werte der interessierenden Parameter und für das ganze Gebiet der Hartmannschen Zahl numerisch gerechnet. Die entsprechenden Kennwerte der Wärmeübertragung zwischen den Kanalwänden und der Flüssigkeit sind im Text tabellarisch angegeben. Das Magnetfeld vergrössert sowohl die Wärmeübertragung durch Leitung als auch durch Strahlung. Die Vergrösserung ist jedoch gering.

Work done under auspices of U.S. Atomic Energy Commission.  相似文献   

17.
In the present note, we have discussed the effects of partial slip on the peristaltic flow of a MHD Newtonian fluid in an asymmetric channel. The governing equations of motion and energy are simplified using a long wave length approximation. A closed form solution of the momentum equation is obtained by Adomian decomposition method and an exact solution of the energy equation is presented in the presence of viscous dissipation term. The expression for pressure rise is calculated using numerical integration. The trapping phenomena is also discussed. The graphical results are presented to interpret various physical parameter of interest. It is found that the temperature field decreases with the increase in slip parameter L, and magnetic field M, while with the increase in Pr and Ec, the temperature field increases.  相似文献   

18.
This article discusses the effect of heat transfer on the peristaltic flow of a Newtonian fluid through a porous space in a vertical asymmetric channel. Long wavelength approximation is used to linearize the governing equations. The system of the governing nonlinear PDE is solved by using the perturbation method. The solutions are obtained for the velocity and the temperature fields. The flow is investigated in a wave frame of reference moving with velocity of the wave. Numerical calculations are carried out for the pressure rise, frictional forces, and the features of the flow and temperature characteristics are analyzed by plotting graphs and discussed in detail. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

19.
The flow and heat transfer problem with viscous dissipation for electrically conducting non-Newtonian fluids with power-law model in the thermal entrance region of two parallel plates with magnetic field under constant heat flux and constant wall temperature conditions has been studied. The governing equations have been solved numerically using quasilinearization technique and implicit finite-difference scheme. It has been found that the effect of viscous dissipation on heat transfer is quite significant for heating and cooling conditions at the wall.  相似文献   

20.
The problem of peristaltic flow of a Newtonian fluid with heat transfer in a vertical asymmetric channel through porous medium is studied under long-wavelength and low-Reynolds number assumptions. The flow is examined in a wave frame of reference moving with the velocity of the wave. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The analytical solution has been obtained in the form of temperature from which an axial velocity, stream function and pressure gradient have been derived. The effects of permeability parameter, Grashof number, heat source/sink parameter, phase difference, varying channel width and wave amplitudes on the pressure gradient, velocity, pressure drop, the phenomenon of trapping and shear stress are discussed numerically and explained graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号