首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A function which is homogeneous in x, y, z of degree n and satisfies Vxx + Vyy + Vzz = 0 is called a spherical harmonic. In polar coordinates, the spherical harmonics take the form rnfn, where fn is a spherical surface harmonic of degree n. On a sphere, fn satisfies ▵ fn + n(n + 1)fn = 0, where ▵ is the spherical Laplacian. Bounded spherical surface harmonics are well studied, but in certain instances, unbounded spherical surface harmonics may be of interest. For example, if X is a parameterization of a minimal surface and n is the corresponding unit normal, it is known that the support function, w = X · n, satisfies ▵w + 2w = 0 on a branched covering of a sphere with some points removed. While simple in form, the boundary value problem for the support function has a very rich solution set. We illustrate this by using spherical harmonics of degree one to construct a number of classical genus-zero minimal surfaces such as the catenoid, the helicoid, Enneper's surface, and Hennenberg's surface, and Riemann's family of singly periodic genus-one minimal surfaces.  相似文献   

2.
3.
Duffing–Van der Pol equation with fifth nonlinear-restoring force and two external forcing terms is investigated. The threshold values of existence of chaotic motion are obtained under the periodic perturbation. By second-order averaging method and Melnikov method, we prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω2 = 1 + εσ, n = 1, 3, 5, and cannot prove the criterion of existence of chaos in second-order averaged system under quasi-periodic perturbation for ω2 = 1 + εσ, n = 2, 4, 6, 7, 8, 9, 10, where σ is not rational to ω1, but can show the occurrence of chaos in original system by numerical simulation. Numerical simulations including heteroclinic and homoclinic bifurcation surfaces, bifurcation diagrams, Lyapunov exponent, phase portraits and Poincaré map, not only show the consistence with the theoretical analysis but also exhibit the more new complex dynamical behaviors. We show that cascades of interlocking period-doubling and reverse period-doubling bifurcations from period-2 to -4 and -6 orbits, interleaving occurrence of chaotic behaviors and quasi-periodic orbits, transient chaos with a great abundance of period windows, symmetry-breaking of periodic orbits in chaotic regions, onset of chaos which occurs more than one, chaos suddenly disappearing to period orbits, interior crisis, strange non-chaotic attractor, non-attracting chaotic set and nice chaotic attractors. Our results show many dynamical behaviors and some of them are strictly departure from the behaviors of Duffing–Van der Pol equation with a cubic nonlinear-restoring force and one external forcing.  相似文献   

4.
In this paper, we study the nonlinear dispersive K(m, n) equations: ut + (um)x  (un)xxx = 0 which exhibit solutions with solitary patterns. New exact solitary solutions are found. The two special cases, K(2, 2) and K(3, 3), are chosen to illustrate the concrete features of the decomposition method in K(m, n) equations. The nonlinear equations K(m, n) are studied for two different cases, namely when m = n being odd and even integers. General formulas for the solutions of K(m, n) equations are established.  相似文献   

5.
6.
We comment on traveling wave solutions and rational solutions to the 3+1 dimensional Kadomtsev–Petviashvili (KP) equations: (ut + 6uux + uxxx)x ± 3uyy ± 3uzz = 0. We also show that both of the 3+1 dimensional KP equations do not possess the three-soliton solution. This suggests that none of the 3+1 dimensional KP equations should be integrable, and partially explains why they do not pass the Painlevé test. As by-products, the one-soliton and two-soliton solutions and four classes of specific three-soliton solutions are explicitly presented.  相似文献   

7.
Let Xn denote the state of a device after n repairs. We assume that the time between two repairs is the time τ taken by a Wiener process {W(t), t ? 0}, starting from w0 and with drift μ < 0, to reach c  [0, w0). After the nth repair, the process takes on either the value Xn?1 + 1 or Xn?1 + 2. The probability that Xn = Xn?1 + j, for j = 1, 2, depends on whether τ ? t0 (a fixed constant) or τ > t0. The device is considered to be worn out when Xn ? k, where k  {1, 2, …}. This model is based on the ones proposed by Rishel (1991) [1] and Tseng and Peng (2007) [2]. We obtain an explicit expression for the mean lifetime of the device. Numerical methods are used to illustrate the analytical findings.  相似文献   

8.
《Journal of Algebra》2002,247(1):244-267
J. Chuang, R. Kessar, and J. Rickard have proved Broué's Abelian defect group conjecture for many symmetric groups. We adapt the ideas of Kessar and Chuang towards finite general linear groups (represented over non-describing characteristic). We then describe Morita equivalences between certain p-blocks of GLn(q) with defect group Cpα × Cpα, as q varies (see Theorem 2). Here p and q are coprime. This generalizes work of S. Koshitani and M. Hyoue, who proved the same result for principal blocks of GLn(q) when p = 3, α = 1, in a different way.  相似文献   

9.
The support of an [n, k] linear code C over a finite field Fq is the set of all coordinate positions such that at least one codeword has a nonzero entry in each of these coordinate position. The rth generalized Hamming weight dr(C), 1  r  k, of C is defined as the minimum of the cardinalities of the supports of all [n, r] subcodes of C. The sequence (d1(C), d2(C),  , dk(C)) is called the Hamming weight hierarchy (HWH) of C. The HWH, dr(C) = n  k + r;  r = 1, 2 , …, k, characterizes maximum distance separable (MDS) codes. Therefore the matrix characterization of MDS codes is also the characterization of codes with the HWH dr(C) = n  k + r; r = 1, 2,  , k. A linear code C with systematic check matrix [IP], where I is the (n  k) × (n  k) identity matrix and P is a (n  k) × k matrix, is MDS iff every square submatrix of P is nonsingular. In this paper we extend this characterization to linear codes with arbitrary HWH. Using this result, we characterize Near-MDS codes, Near-Near-MDS (N2-MDS) codes and Aμ-MDS codes. The MDS-rank of C is the smallest integer η such that dη+1 = n  k + η + 1 and the defect vector of C with MDS-rank η is defined as the ordered set {μ1(C), μ2(C), μ3(C),  , μη(C), μη+1(C)}, where μi(C) = n  k + i  di(C). We call C a dually defective code if the defect vector of the code and its dual are the same. We also discuss matrix characterization of dually defective codes. Further, the codes meeting the generalized Greismer bound are characterized in terms of their generator matrix. The HWH of dually defective codes meeting the generalized Greismer bound are also reported.  相似文献   

10.
Let q be a pattern and let Sn, q(c) be the number of n-permutations having exactly c copies of q. We investigate when the sequence (Sn, q(c))c  0 has internal zeros. If q is a monotone pattern it turns out that, except for q = 12 or 21, the nontrivial sequences (those where n is at least the length of q) always have internal zeros. For the pattern q = 1(l + 1)l…2 there are infinitely many sequences which contain internal zeros and when l = 2 there are also infinitely many which do not. In the latter case, the only possible places for internal zeros are the next-to-last or the second-to-last positions. Note that by symmetry this completely determines the existence of internal zeros for all patterns of length at most 3.  相似文献   

11.
In many real-life situations, we know the probability distribution of two random variables x1 and x2, but we have no information about the correlation between x1 and x2; what are the possible probability distributions for the sum x1 + x2? This question was originally raised by A.N. Kolmogorov. Algorithms exist that provide best-possible bounds for the distribution of x1 + x2; these algorithms have been implemented as a part of the efficient software for handling probabilistic uncertainty. A natural question is: what if we have several (n > 2) variables with known distribution, we have no information about their correlation, and we are interested in possible probability distribution for the sum y = x1 +  + xn? Known formulas for the case n = 2 can be (and have been) extended to this case. However, as we prove in this paper, not only are these formulas not best-possible anymore, but in general, computing the best-possible bounds for arbitrary n is an NP-hard (computationally intractable) problem.  相似文献   

12.
The nonlinear dispersive K(m, n) equations, ut−(um)x−(un)xxx = 0 which exhibit compactons: solitons with compact support, are studied. New exact solitary solutions with compact support are found. The two special cases, K(2, 2) and K(3, 3), are chosen to illustrate the concrete features of the decomposition method in K(m, n) equations. General formulas for the solutions of K(m, n) equations are established.  相似文献   

13.
《Journal of Algebra》2002,247(2):509-540
Let Fm be a free group of a finite rank m  2 and let Xi, Yj be elements in Fm. A non-empty word w(x1,…,xn) is called a C-test word in n letters for Fm if, whenever (X1,…,Xn) = w(Y1,…,Yn)  1, the two n-typles (X1,…,Xn) and (Y1,…,Yn) are conjugate in Fm. In this paper we construct, for each n  2, a C-test word vn(x1,…,xn) with the additional property that vn(X1,…,Xn) = 1 if and only if the subgroup of Fm generated by X1,…,Xn is cyclic. Making use of such words vm(x1,…,xm) and vm + 1(x1,…,xm + 1), we provide a positive solution to the following problem raised by Shpilrain: There exist two elements u1, u2  Fm such that every endomorphism ψ of Fm with non-cyclic image is completely determined by ψ(u1), ψ(u2).  相似文献   

14.
In this paper the statistical properties of nucleotides in human chromosomes 21 and 22 are investigated. The n-tuple Zipf analysis with n = 3, 4, 5, 6, and 7 is used in our investigation. It is found that the most common n-tuples are those which consist only of adenine (A) and thymine (T), and the rarest n-tuples are those in which GC or CG pattern appears twice. With the n-tuples become more and more frequent, the double GC or CG pattern becomes a single GC or CG pattern. The percentage of four nucleotides in the rarest ten and the most common ten n-tuples are also considered in human chromosomes 21 and 22, and different behaviors are found in the percentage of four nucleotides. Frequency of appearance of n-tuple f(r) as a function of rank r is also examined. We find the n-tuple Zipf plot shows a power-law behavior for r < 4n−1 and a rapid decrease for r > 4n−1. In order to explore the interior statistical properties of human chromosomes 21 and 22 in detail, we divide the chromosome sequence into some moving windows and we discuss the percentage of ξη (ξ, η = A, C, G, T) pair in those moving windows. In some particular regions, there are some obvious changes in the percentage of ξη pair, and there maybe exist functional differences. The normalized number of repeats N0(l) can be described by a power law: N0(l)  lμ. The distance distributions P0(S) between two nucleotides in human chromosomes 21 and 22 are also discussed. A two-order polynomial fit exists in those distance distributions: log P0(S) = a + bS + cS2, and it is quite different from the random sequence.  相似文献   

15.
Let ut  uxx = h(t) in 0  x  π, t  0. Assume that u(0, t) = v(t), u(π, t) = 0, and u(x, 0) = g(t). The problem is: what extra data determine the three unknown functions {h, v, g} uniquely? This question is answered and an analytical method for recovery of the above three functions is proposed.  相似文献   

16.
In this paper we demonstrate new approach that can help in calculation of electrostatic potential of a fractal (self-similar) cluster that is created by a system of charged particles. For this purpose we used the simplified model of a plane dendrite cluster [1] that is generated by a system of the concentric charged rings located in some horizontal plane (see Fig. 2). The radiuses and charges of the system of concentric rings satisfy correspondingly to relationships: rn = r0ξn and en = e0bn, where n determines the number of a current ring. The self-similar structure of the system considered allows to reduce the problem to consideration of the functional equation that similar to the conventional scaling equation. Its solution represents itself the sum of power-low terms of integer order and non-integer power-law term multiplied to a log-periodic function [5], [6]. The appearance of this term was confirmed numerically for internal region of the self-similar cluster (r0  r  rN−1), where r0, rN−1 determine the smallest and the largest radiuses of the limiting rings correspondingly. The results were obtained for homogeneously (b > 0) and heterogeneously (b < 0) charged rings. We expect that this approach allows to consider more complex self-similar structures with different geometries of charge distributions.  相似文献   

17.
The influence of the quadratic and cubic terms on non-linear dynamic characteristics of the angle-ply composite laminated rectangular plate with parametric and external excitations is investigated. The method of multiple time scale perturbation is applied to solve the non-linear differential equations describing the system up to and including the second-order approximation. All possible resonance cases are extracted and investigated at this approximation order. Two cases of the sub-harmonic resonances cases (Ω2 ? 2ω1 and Ω2 ? 2ω2) in the presence of 1:2 internal resonance ω2 ? 2ω1 are considered. The stability of the system is investigated using both frequency response equations and phase-plane method. It is quite clear that some of the simultaneous resonance cases are undesirable in the design of such system as they represent some of the worst behavior of the system. Such cases should be avoided as working conditions for the system. Some recommendations regarding the different parameters of the system are reported. Comparison with the available published work is reported.  相似文献   

18.
Let Ay = f, A is a linear operator in a Hilbert space H, y  N(A)  {u : Au = 0}, R(A)  {h : h = Au, u  D(A)} is not closed, ∥fδ  f  δ. Given fδ, one wants to construct uδ such that limδ→0uδ  y = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are formulated and mathematically justified.  相似文献   

19.
《Journal of Algebra》1999,211(2):562-577
LetRbe a Krull ring with quotient fieldKanda1,…,aninR. If and only if theaiare pairwise incongruent mod every height 1 prime ideal of infinite index inRdoes there exist for all valuesb1,…,bninRan interpolating integer-valued polynomial, i.e., anf  K[x] withf(ai) = biandf(R)  R.IfSis an infinite subring of a discrete valuation ringRvwith quotient fieldKanda1,…,aninSare pairwise incongruent mod allMkv  Sof infinite index inS, we also determine the minimald(depending on the distribution of theaiamong residue classes of the idealsMkv  S) such that for allb1,…,bn  Rvthere exists a polynomialf  K[x] of degree at mostdwithf(ai) = biandf(S)  Rv.  相似文献   

20.
Degasperis and Procesi applied the method of asymptotic integrability and obtain Degasperis–Procesi equation. They showed that it has peakon solutions, which has a discontinuous first derivative at the wave peak, but they did not explain the reason that the peakon solution arises. In this paper, we study these non-smooth solutions of the generalized Degasperis–Procesi equation ut  utxx + (b + 1)uux = buxuxx + uuxxx, show the reason that the non-smooth travelling wave arise and investigate global dynamical behavior and obtain the parameter condition under which peakon, compacton and another travelling wave solutions engender. Under some parameter condition, this equation has infinitely many compacton solutions. Finally, we give some explicit expression of peakon and compacton solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号