首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eigenvalue problems are considered for the fractional ordinary differential equations with different classes of boundary conditions including the Dirichlet, Neumann, Robin boundary conditions and the periodic boundary condition. The eigenvalues and eigenfunctions are characterized in terms of the Mittag–Leffler functions. The eigenvalues of several specified boundary value problems are calculated by using MATLAB subroutine for the Mittag–Leffler functions. When the order is taken as the value 2, our results degenerate to the classical ones of the second-ordered differential equations. When the order α satisfies 1 < α < 2 the eigenvalues can be finitely many.  相似文献   

2.
We consider the semilinear elliptic PDE Δu + f(λ, u) = 0 with the zero-Dirichlet boundary condition on a family of regions, namely stadions. Linear problems on such regions have been widely studied in the past. We seek to observe the corresponding phenomena in our nonlinear setting. Using the Gradient Newton Galerkin Algorithm (GNGA) of Neuberger and Swift, we document bifurcation, nodal structure, and symmetry of solutions. This paper provides the first published instance where the GNGA is applied to general regions. Our investigation involves both the dimension of the stadions and the value λ as parameters. We find that the so-called crossings and avoided crossings of eigenvalues as the dimension of the stadions vary influences the symmetry and variational structure of nonlinear solutions in a natural way.  相似文献   

3.
A new analytic algorithm for highly nonlinear time fractional reaction–diffusion equations is proposed in this paper. The proposed method is an amalgamation of variational iteration method (VIM), Adomian decomposition method (ADM) and further refined by introducing a new correction functional. This new correction functional is obtained from the standard correction functional of VIM by introducing an auxiliary parameter γ and an auxiliary function H(x) in it. Further, a sequence Gn(x, t), with suitably chosen support, is also introduced in the new correction functional. The algorithm is easy to implement and only four to six iterations are sufficient for fairly accurate solutions. The algorithm is tested on Fitzhugh – Nagumo and generalized Fisher equations with nonlinearity ranging from 2 to 5.  相似文献   

4.
The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a system typified as a mass attached to a stretched elastic wire. The restoring force for this oscillator has an irrational term with a parameter λ that characterizes the system (0 ? λ ? 1). For λ = 1 and small values of x, the restoring force does not have a dominant term proportional to x. We find this perturbation method works very well for the whole range of parameters involved, and excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions and the maximal relative error for the approximate frequency is less than 2.2% for small and large values of oscillation amplitude. This error corresponds to λ = 1, while for λ < 1 the relative error is much lower. For example, its value is as low as 0.062% for λ = 0.5.  相似文献   

5.
For the Bratu problem, we transform it into a non-linear second order boundary value problem, and then solve it by the Lie-group shooting method (LGSM). LGSM allows us to search a missing initial slope and moreover, the initial slope can be expressed as a function of r  [0, 1], where the best r is determined by matching the right-end boundary condition. The calculated results as compared with those calculated by other methods, illuminate the efficiency and precision of Lie-group shooting method (LGSM) for this problem.  相似文献   

6.
This communication deals with the unsteady boundary layer flow of a viscous fluid in porous medium started due to the impulsively stretching of the plane wall. The wall is assumed to be porous so that suction or injection is possible. Complete analytic solution which is uniformly valid for all the dimensionless times 0  τ < 0 in the whole spatial region 0  η < ∞ is obtained by a purely analytic technique, namely the homotopy analysis method. Results are discussed through graphs.  相似文献   

7.
In this paper, the variational iteration method (VIM) is used to study the singular Emden-Fowler initial value problems and boundary value problems arising in physics and astrophysics. The VIM overcomes the singularity at the origin. The Lagrange multipliers for all cases of the equations are determined. The work is supported by analyzing few initial value problems and boundary value problems where the convergence of the results is emphasized.  相似文献   

8.
The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0 < n < 0.5 and for n > 0.5.  相似文献   

9.
A novel mathematical modeling of multiple scales (NMMMS) is presented for a class of singular perturbed problems with both boundary or transition layers in two dimensions. The original problems are converted into a series of problems with different scales, and under these different scales, each of the problem is regular. The rational spectral collocation method (RSCM) is applied to deal with the problems without singularities. NMMMS can still work successfully even when the parameter ε is extremely small (ε = 10?25 or even smaller). A brief error estimate for the model problem is given in Section 2. Numerical examples are implemented to show the method is of high accuracy and efficiency.  相似文献   

10.
In this paper we consider the positive definite solutions of nonlinear matrix equation X + AXδA = Q, where δ  (0, 1], which appears for the first time in [S.M. El-Sayed, A.C.M. Ran, On an iteration methods for solving a class of nonlinear matrix equations, SIAM J. Matrix Anal. Appl. 23 (2001) 632–645]. The necessary and sufficient conditions for the existence of a solution are derived. An iterative algorithm for obtaining the positive definite solutions of the equation is discussed. The error estimations are found.  相似文献   

11.
The initial-boundary-value problem on the semi-infinite interval and on a finite interval for the Burgers equation ut = uxx + 2uxu is solved using a stream function ? and a linearizing transformation w = e?. The transformation reduces the equation to a heat equation with appropriate initial and homogeneous time-dependent linear boundary conditions. One advantage of this method is that we never need to find an explicit expression for ? in our computations.  相似文献   

12.
To interpolate function, f(x), a ? x ? b, when we have some information about the values of f(x) and their derivatives in separate points on {x0, x1,  , xn} ? [a, b], the Hermit interpolation method is usually used. Here, to solve this kind of problems, extended rational interpolation method is presented and it is shown that the suggested method is more efficient and suitable than the Hermit interpolation method, especially when the function f(x) has singular points in interval [a, b]. Also for implementing the extended rational interpolation method, the direct method and the inverse differences method are presented, and with some examples these arguments are examined numerically.  相似文献   

13.
In this paper, an analytic technique, namely the homotopy analysis method, is employed to solve the Fisher equation, which describes a family of travelling waves with a front. The explicit series solution for all possible wave speeds 0 < c < +∞ is given. Such kind of explicit series solution has never been reported, to the best of author’s knowledge. Our series solution indicates that the solution contains an oscillation part when 0 < c < 2. The proposed analytic approach is general, and can be applied to solve other similar nonlinear travelling wave problems.  相似文献   

14.
A function which is homogeneous in x, y, z of degree n and satisfies Vxx + Vyy + Vzz = 0 is called a spherical harmonic. In polar coordinates, the spherical harmonics take the form rnfn, where fn is a spherical surface harmonic of degree n. On a sphere, fn satisfies ▵ fn + n(n + 1)fn = 0, where ▵ is the spherical Laplacian. Bounded spherical surface harmonics are well studied, but in certain instances, unbounded spherical surface harmonics may be of interest. For example, if X is a parameterization of a minimal surface and n is the corresponding unit normal, it is known that the support function, w = X · n, satisfies ▵w + 2w = 0 on a branched covering of a sphere with some points removed. While simple in form, the boundary value problem for the support function has a very rich solution set. We illustrate this by using spherical harmonics of degree one to construct a number of classical genus-zero minimal surfaces such as the catenoid, the helicoid, Enneper's surface, and Hennenberg's surface, and Riemann's family of singly periodic genus-one minimal surfaces.  相似文献   

15.
The soft collisions among fluid–fluid and fluid-wall molecules are modeled from first principles. In particular, the assumption of Maxwellian distribution of velocities for thermalized molecules, in both parallel and perpendicular directions to the wall, has been re-evaluated with supporting experimental and/or numerical evidence.It is proposed that the normal component of molecular velocity post collision is conserved for all fluid molecules. The slip effect at the wall boundary, introduced by the surface roughness, is accounted by an accommodation coefficient f. A moving least square method is used to calculate macroscopic velocity values. The influence of molecular interaction on the macroscopic velocity distribution is investigated at 40 MPa and 300 K for slit pore, inclined and stepped wall configurations. The accommodation coefficient values f = 0, 0.07, 0.257, 0.45, 0.681 and 1; and acceleration values ranging from zero to 1 × 1011 m/s2 and 250 × 1011 m/s2 are used for comparison.The distribution of macroscopic velocity parallel to the wall is studied to observe the effect of the slip behaviour. The detailed study of average of velocity values at various magnitudes of acceleration has shown an evidence of characteristic low and high speed of molecular flows that is considered as significant and a comparison is sought with an equivalent laminar and turbulent flow style behaviour. The two dimensional vector and contour plots of macroscopic velocity provide further insights in understanding Continuum velocity distributions resulting from molecular fluid-wall interaction at nanoscale. The research has highlighted the need to develop molecular dynamics simulation techniques for non-periodic boundary conditions.  相似文献   

16.
The effects of homogeneous–heterogeneous reactions on the steady boundary layer flow near the stagnation point on a stretching surface is studied. The possible steady-states of this system are analyzed in the case when the diffusion coefficients of both reactant and auto catalyst are equal. The strength of this effect is represented by the dimensionless parameter K and Ks. It is shown that for a fluid of small kinematic viscosity, a boundary layer is formed when the stretching velocity is less than the free stream velocity and an inverted boundary layer is formed when the stretching velocity exceeds the free stream velocity. The uniqueness of this problem lies on the fact that the solutions are possible for all values of λ > 0 (stretching surface), while for λ < 0 (shrinking surface), solutions are possible only for its limited range.  相似文献   

17.
Let ut  uxx = h(t) in 0  x  π, t  0. Assume that u(0, t) = v(t), u(π, t) = 0, and u(x, 0) = g(t). The problem is: what extra data determine the three unknown functions {h, v, g} uniquely? This question is answered and an analytical method for recovery of the above three functions is proposed.  相似文献   

18.
The area-perimeter scaling can be employed to evaluate the fractal dimension of urban boundaries. However, the formula in common use seems to be not correct. By means of mathematical method, a new formula of calculating the boundary dimension of cities is derived from the idea of box-counting measurement and the principle of dimensional consistency in this paper. Thus, several practical results are obtained as follows. First, I derive the hyperbolic relation between the boundary dimension and form dimension of cities. Using the relation, we can estimate the form dimension through the boundary dimension and vice versa. Second, I derive the proper scales of fractal dimension: the form dimension comes between 1.5 and 2, and the boundary dimension comes between 1 and 1.5. Third, I derive three form dimension values with special geometric meanings. The first is 4/3, the second is 3/2, and the third is 1 + 21/2/2  1.7071. The fractal dimension relation formulae are applied to China’s cities and the cities of the United Kingdom, and the computations are consistent with the theoretical expectation. The formulae are useful in the fractal dimension estimation of urban form, and the findings about the fractal parameters are revealing for future city planning and the spatial optimization of cities.  相似文献   

19.
Let Xn denote the state of a device after n repairs. We assume that the time between two repairs is the time τ taken by a Wiener process {W(t), t ? 0}, starting from w0 and with drift μ < 0, to reach c  [0, w0). After the nth repair, the process takes on either the value Xn?1 + 1 or Xn?1 + 2. The probability that Xn = Xn?1 + j, for j = 1, 2, depends on whether τ ? t0 (a fixed constant) or τ > t0. The device is considered to be worn out when Xn ? k, where k  {1, 2, …}. This model is based on the ones proposed by Rishel (1991) [1] and Tseng and Peng (2007) [2]. We obtain an explicit expression for the mean lifetime of the device. Numerical methods are used to illustrate the analytical findings.  相似文献   

20.
This work presents a numerical study on the turbulent flow of air with dispersed water droplets in separators of mechanical cooling towers. The averaged Navier-Stokes equations are discretised through a finite volume method, using the Fluent and Phoenics codes, and alternatively employing the turbulence models k ? ?, k ? ω and the Reynolds stress model, with low-Re version and wall enhanced treatment refinements. The results obtained are compared with numerical and experimental results taken from the literature. The degree of accuracy obtained with each of the considered models of turbulence is stated. The influence of considering whether or not the simulation of the turbulent dispersion of droplets is analyzed, as well as the effects of other relevant parameters on the collection efficiency and the coefficient of pressure drop. Focusing on four specific eliminators (‘Belgian wave’, ‘H1-V’, ‘L-shaped’ and ‘Zig-zag’), the following ranges of parameters are outlined: 1  Ue  5 m/s for the entrance velocity, 2  Dp  50 μm for the droplet diameter, 650  Re  8.500 for Reynolds number, and 0.05  Pi  5 for the inertial parameter. Results reached alternately with Fluent and Phoenics codes are compared. The best results correspond to the simulations performed with Fluent, using the SST k ? ω turbulence model, with values of the dimensionless scaled distance to wall y+ in the range 0.2 to 0.5. Finally, correlations are presented to predict the conditions for maximum collection efficiency (100 %), depending on the geometric parameter of removal efficiency of each of the separators, which is introduced in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号