首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.  相似文献   

2.
Piecewise polynomialss(x) of degreem2 and of continuity classC 1 are used to obtain approximating functions to the exact solution of a given (ordinary) integro-differential equation of Volterra type. The unknown coefficients ofs(x) are computed recursively, by requiring thats(x) satisfy the integro-differential equation on a finite set of suitably chosen points. Results on the order of convergence of this method are given, together with a numerical illustration.This research was supported by the National Research of Canada (Grant No. A-4805). Received March 13, 1973. Revised July 2, 1973.  相似文献   

3.
B. Zubik-Kowal  Z. Jackiewicz  F.C. Hoppensteadt 《PAMM》2007,7(1):2020085-2020086
Our study concerns thalamo-cortical systems which are modelled by nonlinear systems of Volterra integro-differential equations of convolution type. The thalamo-cortical systems describe a new architecture for a neurocomputer. Such a computer employs principles of human brain. It consists of oscillators which have different frequencies and are weakly connected via a common medium forced by an external input. Since a neurocomputer consists of many interconnected oscillators (referred also as neurons), the thalamo-cortical systems include large numbers of Volterra integro-differential equations. Solving such systems numerically is expensive not only because of their large dimensions but also because of many kernel evaluations which are needed over the whole interval from the initial point, where the initial condition is imposed, up to the present point, where the computations are currently executed. Moreover, the whole computed history of the solution has to be stored in the memory of the computing machine. Therefore, robust and efficient numerical algorithms are needed for computer simulations for the solutions to the thalamocortical systems. In this paper, we illustrate an iteration technique to solve the thalamo-cortical systems. The proposed successive iterates are vector functions of time, which change the original problems into systems of easier and separated equations. Such separated equations can then be solved in parallel computing environments. Results of numerical experiments are presented for large numbers of oscillators. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
An efficient method based on operational Tau matrix is developed, to solve a type of system of nonlinear Volterra integro-differential equations (IDEs). The presented method is also modified for the problems with separable kernel. Error estimation of the new schemes are analyzed and discussed. The advantages of this approach and its modification is that, the solution can be expressed as a truncated Taylor series, and the error function at any stage can be estimated. Methods are applied on the four problems with separable kernel to show the applicability and efficiency of our schemes, specially for those problems at broad intervals.  相似文献   

5.
In this paper, the HAM is applied to obtained the series solution of the high-order nonlinear Volterra and Fredholm integro-differential problems with power-law nonlinearity. Two cases are considered, in the first case the set of base functions is introduced to represent solution of given nonlinear problem and in the other case, the set of base functions is not introduced. However, in both cases, the convergence-parameter provides us with a simple way to adjust and control the convergence region of solution series.  相似文献   

6.
We analyze a discretization method for solving nonlinear integral equations that contain multiple integrals. These equations include integral equations with a Volterra series, instead of a single integral term, on one side of the equation. We prove existence and uniqueness of solutions, and convergence and estimates of the order of convergence for the numerical methods of solution.  相似文献   

7.
In this paper we present a computational method for solving a class of nonlinear Fredholm integro-differential equations of fractional order which is based on CAS (Cosine And Sine) wavelets. The CAS wavelet operational matrix of fractional integration is derived and used to transform the equation to a system of algebraic equations. Some examples are included to demonstrate the validity and applicability of the technique.  相似文献   

8.
The operational Tau method, a well-known method for solving functional equations, is employed to solve a system of nonlinear Volterra integro-differential equations with nonlinear differential part. In addition, an error estimation of the method is presented. Some cases of the mentioned equations are solved as examples to illustrate the ability and reliability of the method. The results reveal that the method is very effective and convenient.  相似文献   

9.
Variable stepsize algorithms for the numerical solution of nonlinear Volterra integral and integro-differential equations of convolution type are described. These algorithms are based on an embedded pair of Runge–Kutta methods of order p=5 and p=4 proposed by Dormand and Prince with interpolation of uniform order p=4. They require O(N) number of kernel evaluations, where N is the number of steps. The cost of the algorithms can be further reduced for equations that have rapidly vanishing convolution kernels, by using waveform relaxation iterations after computing the numerical approximation by variable stepsize algorithm on some initial interval. AMS subject classification (2000)  65R20, 45L10, 93C22  相似文献   

10.
The use of homotopy analysis method to approximate the solution of nonlinear Volterra-Fredholm integro-differential equation is proposed in this paper. In this case, the existence and uniqueness of the obtained solution and convergence of the method are proved. The accuracy of the proposed numerical scheme is examined by comparing with the modified Adomian decomposition method and Taylor polynomial method in the example. Also, the cost of operations in the algorithms are obtained to demonstrate the efficiency of the presented method.  相似文献   

11.
本文给出了分数阶积分微分方程的一种新的解法.利用未知函数的泰功多项式展开将分数阶积分微分方程近拟转化为一个涉及未知函数及其n阶导数的线性方程组.数值例子表明该方法的有效性.  相似文献   

12.
In this paper, we introduce new solutions for fuzzy differential equations as mixed solutions, and prove the existence and uniqueness of global solutions for fuzzy initial value problems involving integro-differential operators of Volterra type. One example is also given by applying mixed solution concept to fuzzy linear differential equations for obtaining their global solutions.  相似文献   

13.
14.
15.
16.
Summary The numerical method discussed in this paper is based on quadrature formulae. With some assumptions on the coefficients of the quadrature formula and on the integrand, convergence properties of the method for both linear and non-linear equations are established.This article is a part of the author's D. Sc. Thesis.  相似文献   

17.
Here the broad study is depending on random integro-differential equations (RIDE) of arbitrary order. The fractional order is in terms of $\psi$-Hilfer fractional operator. This work reveals the dynamical behaviour such as existence, uniqueness and stability solutions for RIDE involving fractional order. Thus initial value problem (IVP), boundary value problem (BVP), impulsive effect and nonlocal conditions are taken in account to prove the results.  相似文献   

18.
For the numerical integration of singular nonlinear integro-differential equations we consider fractional linear multistep methods. We prove convergence of these methods and discuss their stability (as an extension of A-stability for stiff differential equations). Numerical experiments with the Basset equation are included.  相似文献   

19.
Galerkin's method with appropriate discretization in time is considered for approximating the solution of the nonlinear integro-differential equation ut(x, t) = ∝0t a(t ? τ) ??x σ(ux(x, τ)) dτ + f(x, t), 0 < x < 1, 0 < t < T.An error estimate in a suitable norm will be derived for the difference u ? uh between the exact solution u and the approximant uh. It turns out that the rate of convergence of uh to u as h → 0 is optimal. This result was confirmed by the numerical experiments.  相似文献   

20.
A method for obtaining spline function approximations to solutions of non-singular Volterra equations of the second kind is presented. Convergence results as well as numerical examples comparing the method with known techniques are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号