首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, by utilizing the Lyapunov–Krasovkii functional and combining with the linear matrix inequality (LMI) approach, we analyze the global exponential stability of neutral-type impulsive neural networks. In addition, an example is provided to illustrate the applicability of the result using LMI control toolbox in MATLAB.  相似文献   

2.
This paper deals with the robust exponential stability problem for a class of Markovian jumping neural networks with time delay. The delay considered varies randomly, depending on the mode of the networks. By using a new Lyapunov–Krasovskii functional, a delay-dependent stability criterion is presented, which can be expressed in terms of linear matrix inequalities (LMIs). A numerical example is given to show the effectiveness of the results.  相似文献   

3.
In this paper, the global exponential stability for neutral-type impulsive neural networks with discrete and distributed delays is established by utilizing the Lyapunov–Krasovskii functional combining with the linear matrix inequality(LMI) approach.  相似文献   

4.
The paper is concerned with a stability analysis problem for neural networks with Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov process, which are governed by a Markov process with discrete and finite state space. A new type of Markovian jumping matrix Pi is introduced in this paper. The discrete delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate the lower conservatism and the effectiveness of the proposed LMI conditions.  相似文献   

5.
This paper deals with the exponential synchronization problem for a class of stochastic jumping chaotic neural networks with mixed delays and sector bounded nonlinearities. The mixed time delays under consideration comprise both discrete time-varying delays and distributed time delays. By applying the Finsler’s Lemma and constructing appropriate Lyapunov-Krasovskii functional based on delay partitioning, several improved delay-dependent feedback controllers with sector nonlinearities are developed to achieve the synchronization in mean square in terms of linear matrix inequalities. It is established theoretically that two special cases of the obtained criteria are less conservative than some existing results but including fewer slack variables. As the present conditions involve no free weighting matrices, the computational burden is largely reduced. One numerical example is provided to demonstrate the effectiveness of the theoretical results.  相似文献   

6.
In this paper, the stability analysis problem is investigated for a class of Markovian jumping genetic regulatory networks (GRNs) with mixed time delays (discrete time delays and distributed time delays) and stochastic perturbations. The main purpose of the addressed stability analysis problem is to establish some easy-to-verify conditions under which the dynamics of the true concentrations of the messenger ribonucleic acid and protein is asymptotically stable. By utilizing a more general Lyapunov-Krasovskii functional based on the idea of “delay decomposing” and the LMI (linear matrix inequality) technique, we derive sufficient delay-dependent conditions ensuring the asymptotically stability of the GRNs with mixed time delays and noise perturbations in terms of LMI. Finally, simulation examples are exploited to illustrate the effectiveness of the developed theoretical results.  相似文献   

7.
This paper investigates the delay-dependent global asymptotic stability problem of stochastic genetic regulatory networks (SGRNs) with Markovian jumping parameters. Based on the Lyapunov-Krasovskii functional and stochastic analysis approach, a delay-dependent sufficient condition is obtained in the linear matrix inequality (LMI) form such that delayed SGRNs are globally asymptotically stable in the mean square. Distinct difference from other analytical approaches lies in “linearization” of the genetic regulatory networks (GRNs) model, by which the considered GRN model is transformed into a linear system. Then, a process, which is called parameterized first-order model transformation is used to transform the linear system. Novel criteria for global asymptotic stability of the SGRNs with constant delays are obtained. Some numerical examples are given to illustrate the effectiveness of our theoretical results.  相似文献   

8.
In this paper, by means of constructing the extended impulsive delayed Halanay inequality and by Lyapunov functional methods, we analyze the global exponential stability and global attractivity of impulsive Hopfield neural networks with time delays. Some new sufficient conditions ensuring exponential stability of the unique equilibrium point of impulsive Hopfield neural networks with time delays are obtained. Those conditions are more feasible than that given in the earlier references to some extent. Some numerical examples are also discussed in this work to illustrate the advantage of the results we obtained.  相似文献   

9.
In this paper, the problem of stochastic stability for a class of delayed neural networks of neutral type with Markovian jump parameters is investigated. The jumping parameters are modelled as a continuous-time, discrete-state Markov process. A sufficient condition guaranteeing the stochastic stability of the equilibrium point is derived for the Markovian jumping delayed neural networks (MJDNNs) with neutral type. The stability criterion not only eliminates the differences between excitatory and inhibitory effects on the neural networks, but also can be conveniently checked. The sufficient condition obtained can be essentially solved in terms of linear matrix inequality. A numerical example is given to show the effectiveness of the obtained results.  相似文献   

10.
This paper considers the global exponential stability and exponential convergence rate of impulsive neural networks with continuously distributed delays in which the state variables on the impulses are related to the unbounded distributed delays. By establishing a new impulsive delay differential inequality, a new criterion concerning global exponential stability for these networks is derived, and the estimated exponential convergence rate is also obtained. The result extends and improves on earlier publications. In addition, two numerical examples are given to illustrate the applicability of the result. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates delay-dependent robust exponential state estimation of Markovian jumping fuzzy neural networks with mixed random time-varying delay. In this paper, the Takagi–Sugeno (T–S) fuzzy model representation is extended to the robust exponential state estimation of Markovian jumping Hopfield neural networks with mixed random time-varying delays. Moreover probabilistic delay satisfies a certain probability-distribution. By introducing a stochastic variable with a Bernoulli distribution, the neural networks with random time delays is transformed into one with deterministic delays and stochastic parameters. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error is globally exponentially stable in the mean square. Based on the Lyapunov–Krasovskii functional and stochastic analysis approach, several delay-dependent robust state estimators for such T–S fuzzy Markovian jumping Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. The unknown gain matrix is determined by solving a delay-dependent LMI. Finally some numerical examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

12.
In this paper, we investigate the problem of robust global exponential stability analysis for a class of neutral-type neural networks. The interval time-varying delays allow for both slow and fast time-varying delays. The values of the time-varying uncertain parameters are assumed to be bounded within given compact sets. Improved global exponential stability condition is derived by employing new Lyapunov-Krasovskii functional and the integral inequality. The developed nominal and robust stability criteria is delay-dependent and characterized by linear-matrix inequalities (LMIs). The developed results are less conservative than previous published ones in the literature, which are illustrated by representative numerical examples.  相似文献   

13.
This paper presents a discrete and distributed time-delays dependent simultaneous approach to deterministic and uncertain stochastic high-order neural networks. New results are proposed in terms of linear matrix inequality (LMI) by exploiting a novel Lyapunov–Krasovskii functional and by making use of novel techniques for time-delay systems. Some constraints of systems are removed, and new results cover some recently published works. Two numerical examples are given to show the usefulness of presented approach.  相似文献   

14.
In this paper, the global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms is considered. By establishing an integro-differential inequality with impulsive initial condition and using the properties of M-cone and eigenspace of the spectral radius of nonnegative matrices, several new sufficient conditions are obtained to ensure the global exponential stability of the equilibrium point for fuzzy cellular neural networks with delays and reaction-diffusion terms. These results extend and improve the earlier publications. Two examples are given to illustrate the efficiency of the obtained results.  相似文献   

15.
This paper deals with the problem of global exponential stability for a general class of stochastic high-order neural networks with mixed time delays and Markovian jumping parameters. The mixed time delays under consideration comprise both discrete time-varying delays and distributed time-delays. The main purpose of this paper is to establish easily verifiable conditions under which the delayed high-order stochastic jumping neural network is exponentially stable in the mean square in the presence of both mixed time delays and Markovian switching. By employing a new Lyapunov–Krasovskii functional and conducting stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the criteria ensuring exponential stability. Furthermore, the criteria are dependent on both the discrete time-delay and distributed time-delay, and hence less conservative. The proposed criteria can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. A simple example is provided to demonstrate the effectiveness and applicability of the proposed testing criteria.  相似文献   

16.
This paper is concerned with the existence and global exponential stability of periodic solution for a class of impulsive Cohen-Grossberg-type BAM neural networks with continuously distributed delays. Some sufficient conditions ensuring the existence and global exponential stability of periodic solution are derived by constructing a suitable Lyapunov function and a new differential inequality. The proposed method can also be applied to study the impulsive Cohen-Grossberg-type BAM neural networks with finite distributed delays. The results in this paper extend and improve the earlier publications. Finally, two examples with numerical simulations are given to demonstrate the obtained results.  相似文献   

17.
In this paper, the problem of passivity analysis is investigated for neural networks with Markovian jumping parameters, interval time-varying delays and norm bounded parameter uncertainties. The delay-dependent passivity conditions are derived for two types of interval time-varying delay in terms of linear matrix inequalities (LMIs). Finally, three numerical examples are given to show the effectiveness of the proposed conditions.  相似文献   

18.
This paper studies the problem of global exponential stability and exponential convergence rate for a class of impulsive discrete-time neural networks with time-varying delays. Firstly, by means of the Lyapunov stability theory, some inequality analysis techniques and a discrete-time Halanay-type inequality technique, sufficient conditions for ensuring global exponential stability of discrete-time neural networks are derived, and the estimated exponential convergence rate is provided as well. The obtained results are then applied to derive global exponential stability criteria and exponential convergence rate of impulsive discrete-time neural networks with time-varying delays. Finally, numerical examples are provided to illustrate the effectiveness and usefulness of the obtained criteria.  相似文献   

19.
This article discusses the issue of robust stability analysis for a class of Markovian jumping stochastic neural networks (NNs) with probabilistic time‐varying delays. The jumping parameters are represented as a continuous‐time discrete‐state Markov chain. Using the stochastic stability theory, properties of Brownian motion, the information of probabilistic time‐varying delay, the generalized Ito's formula, and linear matrix inequality (LMI) technique, some novel sufficient conditions are obtained to guarantee the stochastical stability of the given NNs. In particular, the activation functions considered in this article are reasonably general in view of the fact that they may depend on Markovian jump parameters and they are more general than those usual Lipschitz conditions. The main features of this article are described in the following: first one is that, based on generalized Finsler lemma, some improved delay‐dependent stability criteria are established and the second one is that the nonlinear stochastic perturbation acting on the system satisfies a class of Lipschitz linear growth conditions. By resorting to the Lyapunov–Krasovskii stability theory and the stochastic analysis tools, sufficient stability conditions are established using an efficient LMI approach. Finally, two numerical examples and its simulations are given to demonstrate the usefulness and effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 21: 59–72, 2016  相似文献   

20.
This paper investigates robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays. The parameter uncertainties are assumed to be bounded in given compact sets. The delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional (LKF), some inequality techniques and stochastic stability theory, new delay-dependent stability criteria have been obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the less conservative and effectiveness of our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号