首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the modulation of nonlinear waves in fluid-filled prestressed tapered tubes. For this, we obtain the nonlinear dynamical equations of motion of a prestressed tapered tube filled with an incompressible inviscid fluid. Assuming that the tapering angle is small and using the reductive perturbation method, we study the amplitude modulation of nonlinear waves and obtain the nonlinear Schrödinger equation with variable coefficients as the evolution equation. A traveling-wave type of solution of such a nonlinear equation with variable coefficients is obtained, and we observe that in contrast to the case of a constant tube radius, the speed of the wave is variable. Namely, the wave speed increases with distance for narrowing tubes and decreases for expanding tubes.  相似文献   

2.
In the present work, we studied the propagation of small-but-finite-amplitude waves in a prestressed thick walled viscoelastic tube filled with an incompressible inviscid fluid. In order to include the dispersion, the wall's inertial and shear effects are taken into account in determining the inner pressure–inner cross-sectional area relation. Using the reductive perturbation method, the propagation of weakly nonlinear waves in the long-wave approximation is investigated. After obtaining the general evolution equation in the long-wave approximation, by a proper scaling, it is shown that this general equation reduces to the well-known evolution equations such as the Burgers, Korteweg-de Vries (KdV), Koteweg-de Vries–Burgers (KdVB) and the generalized Burgers' equations. By proper re-scaling of the perturbation parameter, the modified form of the evolution equations is also obtained. The variations of the travelling wave profile with initial deformation and the viscosity coefficients are numerically evaluated and the results are illustrated in some figures.  相似文献   

3.
Nonlinear evolution equations of the fourth order and its partial cases are derived for describing nonlinear pressure waves in a mixture liquid and gas bubbles. Influence of viscosity and heat transfer is taken into account. Exact solutions of nonlinear evolution equation of the fourth order are found by means of the simplest equation method. Properties of nonlinear waves in a liquid with gas bubbles are discussed.  相似文献   

4.
The attenuation of normal waves is investigated in a cylindrical cavity of an unbounded viscoelastic medium, in which there is a thin elastic shell filled with a viscous compressible liquid. It is assumed that the absorption of waves in a liquid or solid is small. The effect of the shell thickness on the value of the absorption coefficient of the normal waves is studied.Translated from Matematicheskie Metody i Fiziko-Mekhanicheskie Polya, No. 25, pp. 49–52, 1987.  相似文献   

5.
In this paper we consider a dispersive–dissipative nonlinear equation which can be regarded as a dissipation perturbed modified KdV equation, governing the evolution of long waves in an elastic rod immersed inside a viscoelastic medium. Using geometric singular perturbation theory, a construction of traveling waves for the equation is shown. This also is illustrated by presenting some numerical calculations.  相似文献   

6.
The paper is concerned with propagation of surface TE waves in a circular nonhomogeneous two-layered dielectric waveguide filled with a Kerr nonlinear medium. The problem is reduced to the analysis of a nonlinear integral equation with a kernel in the form of a Green’s function. The existence of propagating TE waves is proved using the contraction mapping method. For the numerical solution of the problem, two methods are proposed: an iterative algorithm (whose convergence is proved) and a method based on solving an auxiliary Cauchy problem (the shooting method). The existence of roots of the dispersion equation (propagation constants of the waveguide) is proved. Conditions under which k waves can propagate are obtained, and regions of localization of the corresponding propagation constants are found.  相似文献   

7.
In the present work, treating the arteries as a tapered, thin walled, long and circularly conical prestressed elastic tube and using the longwave approximation, we have studied the propagation of weakly nonlinear waves in such a fluid-filled elastic tube by employing the reductive perturbation method. By considering the blood as an incompressible inviscid fluid the evolution equation is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equations admit a solitary wave type of solution with variable wave speed. It is observed that, the wave speed increases with distance for positive tapering while it decreases for negative tapering.  相似文献   

8.
In the present work, treating the arteries as a tapered, thin walled, long and circularly conical prestressed elastic tube and using the longwave approximation, we have studied the propagation of weakly nonlinear waves in such a fluid-filled elastic tube by employing the reductive perturbation method. By considering the blood as an incompressible inviscid fluid the evolution equation is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equations admit a solitary wave type of solution with variable wave speed. It is observed that, the wave speed increases with distance for positive tapering while it decreases for negative tapering.  相似文献   

9.
A singular perturbation method is developed to investigate onedimensional weak nonlinear waves in dissipative or dispersivemedia. Utilizing this method a boundary value problem for asystem of partial differential equations characterizing wavepropagation in homogeneous dissipative or dispersive media isstudied. In order to obtain a first-order uniformly valid solution,the problem is reduced to an initial value problem for scalarnon-linear partial differential equation. Some special casesarising from the structure of coefficient matrices are examinedand the method is extended to these cases. As an applicationof the perturbation method, various problems of wave propagationin a finite linear viscoelastic half-space are studied.  相似文献   

10.
D. Zeidan In this paper, we consider the existence of traveling waves in a generalized nonlinear dispersive–dissipative equation, which is found in many areas of application including waves in a thermoconvective liquid layer and nonlinear electromagnetic waves. By using the theory of dynamical systems, specifically based on geometric singular perturbation theory and invariant manifold theory, Fredholm theory, and the linear chain trick, we construct a locally invariant manifold for the associated traveling wave equation and use this invariant manifold to obtain the traveling waves for the nonlinear dispersive–dissipative equation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The problem of the propagation of progressive waves in a tube made of a linearly viscoelastic material which encloses a viscous Newtonian liquid is examined. For numerical calculations, it is proposed that the behavior of the tube wall material be described by the Voigt model. Dispersion curves are constructed for this case.S. M. Kirov Azerbaidzhan State University, Baku. Translated from Mekhanika Polimerov, No. 2, pp. 317–321, March–April, 1976.  相似文献   

12.
In this work, propagation of harmonic waves in initially stressed cylindrical viscoelastic thick tubes filled with a Newtonian fluid is studied. The tube, subjected to a static inner pressure Pi and a positive axial stretch λ, will be considered as an incompressible viscoelastic and fibrous material. The fluid is assumed as an incompressible, viscous and dusty fluid. The field equations for the fluid are obtained in the cylindrical coordinates. The governing differential equations of the tube’s viscoelastic material are obtained also in the cylindrical coordinates utilizing the theory of small deformations superimposed on large initial static deformations. For the axially symmetric motion the field equations are solved by assuming harmonic wave solutions. A closed form solution can be obtained for equations governing the fluid body, but due to the variability of the coefficients of resulting differential equations of the solid body, such a closed form solution is not possible to obtain. For that reason, equations for the solid body and the boundary conditions are treated numerically by the finite-difference method to obtain the effects of the thickness of the tube on the wave characteristics. Dispersion relation is obtained using the long wave approximation and, the wave velocities and the transmission coefficients are computed.  相似文献   

13.
In the present work, treating the arteries as a tapered, thin-walled, long and circularly conical prestressed elastic tube and using the long-wave approximation, we have studied the propagation of weakly nonlinear waves in such a fluid-filled elastic tube by employing the reductive perturbation method. By considering the blood as an incompressible inviscid fluid the evolution equation is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equations admits a solitary wave type of solution with variable wave speed. It is observed that the wave speed increases with the scaled time parameter τ for positive tapering while it decreases for negative tapering, as expected.  相似文献   

14.
The present work treats the arteries as a thin walled prestressed elastic tube with variable cross-section and uses the longwave approximation to study the propagation of weakly nonlinear waves in such a fluid-filled elastic tube by employing the reductive perturbation method. By considering the blood as an incompressible inviscid fluid, the evolution equation is obtained as the Korteweg–de Vries equation with a variable coefficient. It is shown that this type of equations admits a solitary wave type of solution with variable wave speed. It is observed that, for soft biological tissues with an exponential strain energy function the wave speed increases with distance for narrowing tubes while it decreases for expanding tubes.  相似文献   

15.
A generalization of the Korteweg-de Vries equation incorporating an energy input-output balance, hence a dissipation-modified KdV equation is considered. The equation is relevant to describe, for instance, nonlinear Marangoni-Bénard oscillatory instability in a liquid layer heated from above. Cnoidal waves and solitary waves of this equation are obtained both asymptotically and numerically.  相似文献   

16.
17.
In the present work, employing the nonlinear equations of an incompressible, isotropic and elastic thick tube and the approximate equations of an incompressible inviscid fluid, and then utilizing the reductive perturbation technique the amplitude modulation of weakly nonlinear waves is examined. It is shown that the amplitude modulation of these waves is governed by a nonlinear Schrödinger(NLS) equation. The range of modulational instability of the monochromatic wave solution with the initial deformation, material and geometrical characteristics is discussed for some elastic materials.  相似文献   

18.
A nonlinear theory of resonant wave motion in an inhomogeneous system (arising from different mechanical applications) is considered. Depending on the magnitude of the influence of inhomogeneity two different situations are encountered. The system may behave either as a nonlinear one-degree-of-freedom oscillator exhibiting a response curve with either soft or hard spring behaviour or for a sufficiently small influence of inhomogeneity, there are periodic shock waves in a certain frequency band about the linear resonance frequency, a phenomenon that is familiar from homogeneous systems like a gas filled tube being excited close to resonance.  相似文献   

19.
轴向变速运动粘弹性弦线横向振动的复模态Galerkin方法   总被引:1,自引:0,他引:1  
在考虑初始张力和轴向速度简谐涨落的情况下,利用含预应力三维变形体的运动方程,建立了轴向变速运动弦线横向振动的非线性控制方程,材料的粘弹性行为由Kelvin模型描述.利用匀速运动线性弦线的模态函数构造了变速运动非线性弦线复模态Galerkin方法的基底函数,并借助构造出来的基底函数研究了复模态Galerkin方法在轴向变速运动粘弹性弦线非线性振动分析中的应用.数值结果表明,复模态Galerkin方法相比实模态Galerkin方法对变系数陀螺系统有较高的收敛速度.  相似文献   

20.
This paper investigates the stability of a thin incompressible viscoelastic fluid designated as Walters’ liquid B″ during spin coating. The long-wave perturbation method is proposed to derive a generalized kinematic model of the film flow. The method of normal mode is applied to study the linear stability. The amplitude growth rates and the threshold conditions are characterized subsequently and summarized as the by-products of the linear solutions. Using the multiple scales method, the weakly nonlinear stability analysis is studied for the evolution equation of a film flow. The Ginzburg–Landau equation is determined to discuss the threshold conditions of the various critical flow states. The study reveals that the rotation number and the radius of the rotating circular disk generate the destabilizing effects. Moreover, the viscoelastic parameter k indeed plays a more significant role in destabilizing the film flow than a thin Newtonian fluid during spin coating [27].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号