首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical slender cylinder is studied numerically. A uniform magnetic field is applied perpendicular to the cylinder. The resulting governing equations are transformed into the non-similar boundary layer equations and solved using the Keller box method. The velocity and temperature profiles as well as the local skin friction and the local heat transfer parameters are determined for different values of the governing parameters, mainly the transverse curvature parameter, the magnetic parameter, the electric field parameter and the Richardson number. For some specific values of the governing parameters, the results agree very well with those available in the literature. Generally, it is determined that the local skin friction coefficient and the local heat transfer coefficient increase, increasing the Richardson number, Ri (i.e. the mixed convection parameter), electric field parameter E1 and magnetic parameter Mn.  相似文献   

2.
The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical plate is studied numerically, taking into account the effects of Ohmic heating and viscous dissipation. A uniform magnetic field is applied perpendicular to the plate. The resulting governing equations are transformed into the non-similar boundary layer equations and solved using the Keller box method. Both the aiding-buoyancy mode and the opposing-buoyancy mode of the mixed convection are examined. The velocity and temperature profiles as well as the local skin friction and local heat transfer parameters are determined for different values of the governing parameters, mainly the magnetic parameter, the Richardson number, the Eckert number and the suction/injection parameter, fw. For some specific values of the governing parameters, the results agree very well with those available in the literature. Generally, it is determined that the local skin friction coefficient and the local heat transfer coefficient increase owing to suction of fluid, increasing the Richardson number, Ri (i.e. the mixed convection parameter) or decreasing the Eckert number. This trend reverses for blowing of fluid and decreasing the Richardson number or decreasing the Eckert number. It is disclosed that the value of Ri determines the effect of the magnetic parameter on the momentum and heat transfer.  相似文献   

3.
This paper presents a numerical analysis of the flow and heat transfer characteristics of natural convection in a micropolar fluid flowing along a vertical slender hollow circular cylinder with conduction effects. The nonlinear formulation governing equations and their associated boundary conditions are first cast into dimensionless forms by a local non-similar transformation. The resulting equations are then solved using the cubic spline collocation method and the finite difference scheme. This study investigates the effects of the conjugate heat transfer parameter, the micropolar parameter, and the Prandtl number on the flow and the thermal fields. The conjugate heat transfer parameter reduces the solid–liquid interfacial temperature, the skin friction factor and the local heat transfer rate. The effect of wall conduction on the local heat transfer rate, interfacial temperature and skin friction factor is found to be more pronounced in a system with a greater Prandtl number. Moreover, the current results are comparing with Newtonian fluid to obtain the important results of the heat transfer and flow characteristics on micropolar fluids. It shows that an increase in the interfacial temperature, a reduction in the skin friction factor, and a reduction in the local heat transfer rate are identified in the current micropolar fluid case.  相似文献   

4.
The unsteady magnetohydrodynamic viscous flow and heat transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral directions are studied by using an analytic technique, namely, the homotopy method. The analytic series solution presented here is highly accurate and uniformly valid for all time in the entire region. The effects of the stretching ratio and the magnetic field on the surface shear stresses and heat transfer are studied. The surface shear stresses in x- and y-directions and the surface heat transfer are enchanced by increasing stretching ratio for a fixed value of the magnetic parameter. For a fixed stretching ratio, the surface shear stresses increase with the magnetic parameter, but the heat transfer decreases. The Nusselt number takes longer time to reach the steady state than the skin friction coefficients. There is a smooth transition from the initial unsteady state to the steady state.  相似文献   

5.
In this paper, the mathematical model of free convection boundary layer flow on a solid sphere with Newtonian heating, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations are solved numerically using an efficient numerical scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature, the local skin friction coefficient, as well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for different values of the Prandtl number Pr and conjugate parameter γ are analyzed and discussed.  相似文献   

6.
We investigate the steady two-dimensional flow of an incompressible water based nanofluid over a linearly semi-infinite stretching sheet in the presence of magnetic field numerically. The basic boundary layer equations for momentum and heat transfer are non-linear partial differential equations. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The dimensionless governing equations for this investigation are solved numerically using Nachtsheim–Swigert shooting iteration technique together with fourth order Runge–Kutta integration scheme. Effects of the nanoparticle volume fraction ϕ, magnetic parameter M, Prandtl number Pr on the velocity and the temperature profiles are presented graphically and examined for different metallic and non-metallic nanoparticles. The skin friction coefficient and the local Nusselt number are also discussed for different nanoparticles.  相似文献   

7.
8.
An analysis has been carried out to study the momentum and heat transfer characteristics in an incompressible electrically conducting non-Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly non-linear coupled ordinary differential equations by similarity transformations. The effect of variable fluid viscosity, Magnetic parameter, Prandtl number, variable thermal conductivity, heat source/sink parameter and thermal radiation parameter are analyzed for velocity, temperature fields, and wall temperature gradient. The resultant coupled highly non-linear ordinary differential equations are solved numerically by employing a shooting technique with fourth order Runge–Kutta integration scheme. The fluid viscosity and thermal conductivity, respectively, assumed to vary as an inverse and linear function of temperature. The analysis reveals that the wall temperature profile decreases significantly due to increase in magnetic field parameter. Further, it is noticed that the skin friction of the sheet decreases due to increase in the Magnetic parameter of the flow characteristics.  相似文献   

9.
In this paper, heat and mass transfer analysis for boundary layer stagnation-point flow over a stretching sheet in a porous medium saturated by a nanofluid with internal heat generation/absorption and suction/blowing is investigated. The governing partial differential equation and auxiliary conditions are converted to ordinary differential equations with the corresponding auxiliary conditions via Lie group analysis. The boundary layer temperature, concentration and nanoparticle volume fraction profiles are then determined numerically. The influences of various relevant parameters, namely, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le, suction/injection parameter S, permeability parameter k1, source/sink parameter λ and Prandtl parameter Pr on temperature and concentration as well as wall heat flux and wall mass flux are discussed. Comparison with published results is presented.  相似文献   

10.
An analysis has been carried out to study the flow and heat transfer characteristics for MHD viscoelastic boundary layer flow over an impermeable stretching sheet with space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink), viscous dissipation, thermal radiation and magnetic field due to frictional heating. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied vertically in the flow region. The governing partial differential equations for the flow and heat transfer are transformed into ordinary differential equations by a suitable similarity transformation. The governing equations with the appropriate conditions are solved exactly. The effects of viscoelastic parameter and magnetic parameter on skin friction and the effects of viscous dissipation, non-uniform heat source/sink and the thermal radiation on heat transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the prescribed wall heat flux (PHF) case are presented graphically and discussed. The numerical results for the wall temperature gradient (the Nusselt number) are presented in tables and are discussed.  相似文献   

11.
The effect of variable viscosity on laminar mixed convection flow and heat transfer along a semi-infinite unsteady stretching sheet taking into account the effect of viscous dissipation is studied. The flow of the fluid and subsequent heat transfer from the stretching surface is investigated with the aid of suitable transformation variables. Solutions for the velocity and temperature fields are obtained for some representative values of the unsteadiness parameter, variable viscosity parameter, mixed convection parameter and Eckert number. Typical velocity and temperature profiles, the local skin friction coefficient and the local heat transfer rate are presented at selected controlling parameters.  相似文献   

12.
The present model concentrates on three-dimensional steady incompressible flow of an Eyring-Powell nanofluid past an exponentially stretching sheet with magnetic field. The Cattaneo–Christov heat flux with convective boundary condition is accounted for. Shooting method is the instrumental for obtaining numerical solution of the transformed-converted system of the mathematical models. Behavior of the determining thermo-physical parameters on the velocity, temperature, skin friction, heat transfer rate, and finally isotherms are considered. The major relevant outcomes of the current investigation are that increment in Eyring-Powell parameter uplifts flow velocity, while that peters out the fluid temperature. Enhanced values of the mixed convection parameter weakened the skin friction coefficient while it slightly strengthened the rate of heat transfer.  相似文献   

13.
The solution of the steady laminar incompressible nonsimilar magneto-hydrodynamic boundary layer flow and heat transfer problem with viscous dissipation for electrically conducting fluids over two-dimensional and axisymmetric bodies with pressure gradient and magnetic field has been presented. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for flow over a cylinder and a sphere. The results indicate that the magnetic field tends to delay or prevent separation. The heat transfer strongly depends on the viscous dissipation parameter. When the dissipation parameter is positive (i.e. when the temperature of the wall is greater than the freestream temperature) and exceeds a certain value, the hot wall ceases to be cooled by the stream of cooler air because the ‘heat cushion’ provided by the frictional heat prevents cooling whereas the effect of the magnetic field is to remove the ‘heat cushion’ so that the wall continues to be cooled. The results are found to be in good agreement with those of the local similarity and local nonsimilarity methods except near the point of separation, but they are in excellent agreement with those of the difference-differential technique even near the point of separation.  相似文献   

14.
A boundary-layer model is described for the two-dimensional nonlinear transient thermal convection heat and mass transfer in an optically-thick fluid in a Darcian porous medium adjacent to an impulsively started vertical surface, in the presence of significant thermal radiation and buoyancy forces in an (X1,Y1,t1) coordinate system. An algebraic approximation is employed to simplify the integro-differential equation of radiative transfer for unidirectional flux normal to the plate into the boundary-layer regime, by incorporating this flux term in the energy conservation equation. The conservation equations are non-dimensionalized into an (X,Y,T) coordinate system and solved using the Network Simulation Method (NSM), a robust numerical technique which demonstrates high efficiency and accuracy. The transient variation of non-dimensional streamwise velocity component (u) and temperature (T) and concentration (C) functions is computed for various selected values of Stark number (radiation–conduction interaction parameter) and Darcy number. Transient velocity (u) and steady-state local skin friction (τX) are also studied for various thermal Grashof number (Gr), species Grashof number (Gm), Schmidt number (Sc) and Stark number (N) values. These computations for the infinite permeability case (Da  ∞) are compared with previous finite difference solutions [Prasad et al. Int J Therm Sci 2007;46(12):1251–8] and shown to be in excellent agreement. An increase in Darcy number is seen to accelerate the flow and boost velocity. A decrease in Stark number (corresponding to an increase in thermal radiation heat transfer contribution) is shown to increase the velocity values. Temperature function is observed to fall in value with a rise in Da and increase with decrease in N (corresponding to an increase in thermal radiation heat transfer contribution). Applications of the study include rocket combustion chambers, astrophysical flows, spacecraft thermal fluid dynamics in debris-laden environments (cosmic dust), heat transfer in forest fire spread, geochemical contamination and ceramic materials processing.  相似文献   

15.
The peristaltic flow of a Jeffrey fluid in a vertical porous stratum with heat transfer is studied under long wavelength and low Reynolds number assumptions. The nonlinear governing equations are solved using perturbation technique. The expressions for velocity, temperature and the pressure rise per one wave length are determined. The effects of different parameters on the velocity, the temperature and the pumping characteristics are discussed. It is observed that the effects of the Jeffrey number λ1, the Grashof number Gr, the perturbation parameter N = EcPr, and the peristaltic wall deformation parameter ϕ are the strongest on the trapping bolus phenomenon. The results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear-thinning reduces the wall shear stress.  相似文献   

16.
The group theoretic method is applied for solving problem of combined magneto-hydrodynamic heat and mass transfer of non-Darcy natural convection about an impermeable horizontal cylinder in a non-Newtonian power law fluid embedded in porous medium under coupled thermal and mass diffusion, inertia resistance, magnetic field, thermal radiation effects. The application of one-parameter groups reduces the number of independent variables by one and consequently, the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The ordinary differential equations are solved numerically for the velocity using shooting method. The effects of magnetic parameter M, Ergun number Er, power law (viscosity) index n, buoyancy ratio N, radiation parameter Rd, Prandtl number Pr and Lewis number Le on the velocity, temperature fields within the boundary layer, heat and mass transfer are presented graphically and discussed.  相似文献   

17.
The present paper presents a numerical solution of flow and heat transfer outside a stretching permeable cylinder. The governing system of partial differential equations is converted to ordinary differential equations by using similarity transformations, which are then solved numerically using the Keller-box method. The main purpose of the present study is to investigate the effects of the governing parameters, namely the suction/injection parameter, Prandtl number, and Reynolds number on the velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number. The results are shown graphically. The values of the skin friction coefficient and the Nusselt number are presented in tables.  相似文献   

18.
The problem of the effect of dust particles on the thermal convection in micropolar ferromagnetic fluid saturating a porous medium subject to a transverse uniform magnetic field has been investigated theoretically. Linear stability analysis and normal mode analysis methods are used to find an exact solution for a flat micropolar ferromagnetic fluid layer contained between two free boundaries. In case of stationary convection, the effect of various parameters like medium permeability, dust particles, non-buoyancy magnetization, coupling parameter, spin-diffusion parameter and micropolar heat conduction parameter are analyzed. For sufficiently large values of magnetic parameter M1, the critical magnetic thermal Rayleigh number for the onset of instability is determined numerically and results are depicted graphically. It is also observed that the critical magnetic thermal Rayleigh number is reduced solely because the heat capacity of clean fluid is supplemented by that of the dust particles. The principle of exchange of stabilities is found to hold true for the micropolar ferromagnetic fluid saturating a porous medium heated from below in the absence of micropolar viscous effect, microinertia and dust particles.  相似文献   

19.
A comprehensive numerical investigation on the natural convection in a rectangular enclosure is presented. The flow is induced due to the constant partial heating at lower half of the left vertical wall and partial cooling at upper half of the right vertical wall along with rest walls are adiabatic. In this investigation the Special attention is given to understand the effect of aspect ratio and heat source intensity i.e. Rayleigh number, Ra, on the fluid flow configuration as well as on the local and average heat transfer rates. The range of Rayleigh (Ra) and aspect ratio (A) is taken [103, 106] and [0.5, 4] respectively. The results are presented in terms of stream function (ψ), temperature (θ) and heat transfer rates (local Nusselt numbers NuL, and average Nusselt numbers Nu). The numerical experiments show that increasing of Ra implies the enhancement of thermal buoyancy force, which in turn increases the thermal convection in the cavity. As a result, the local as well as average heat transfer rate is expected to increase. The local transfer rate (NuL) is increases in the small region near the left vertical wall of the left wall of the cavity and after that it is decreases in the middle portion of heated region. And, it start to increase near to the middle point of left wall. It is also observed that the local heat transfer is increases as increases the aspect ratio. The average heat transfer rate (Nu) is increases as the aspect ratio A increases from 0.5 to 1 and beyond that it is decreases smoothly. It is also found that the heat transfer rate attains its maximum value at aspect ratio one.  相似文献   

20.
This paper deals with the study of heat transfer characteristics in the laminar boundary layer flow of a visco-elastic fluid over a linearly stretching continuous surface with variable wall temperature subjected to suction or blowing. The study considers the effects of frictional heating (viscous dissipation) and internal heat generation or absorption. An analysis has been carried out for two different cases of heating processes namely: (i) Prescribed surface temperature (PST) and (ii) Prescribed wall heat flux (PHF) to get the effect of visco-elastic parameter for various situations. Further increase of visco-elastic parameter is to decrease the skin friction on the sheet. The solutions for the temperature and the heat transfer characteristics are obtained in terms of Kummers function. Received: June 16, 2004; revised: February 8, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号