首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Minimum entropy control technique, an approach for controlling chaos without using the dynamical model of the system, can be improved by being combined with a nature-based optimization technique. In this paper, an ACO-based optimization algorithm is employed to minimize the entropy function of the chaotic system. The feedback gain of a delayed feedback controller is adjusted in the ACO algorithm. The effectiveness of the idea is investigated on suppressing chaos in the tapping-mode atomic force microscope equations. Results show a good performance. The PSO-based version of the minimum entropy control technique is also used to control the chaotic behavior of the AFM, and corresponding results are compared showing almost a same functionality for the two optimization algorithms of PSO and ACO as the minimizing engines of the minimum entropy strategy.  相似文献   

2.
One of the recently developed approaches for control of chaos is the minimum entropy (ME) control technique. In this method an entropy function based on the Shannon definition, is defined for a chaotic system. The control action is designed such that the entropy as a cost function is minimized which results in more regular pattern of motion for the system trajectories. In this paper an online optimization technique using particle swarm optimization (PSO) method is developed to calculate the control action based on ME strategy. The method is examined on some standard chaotic maps with error feedback and delayed feedback forms. Considering the fact that the optimization is online, simulation results show very good effectiveness of the presented technique in controlling chaos.  相似文献   

3.
Chaos control of a spinning disk model via delayed feedback method is presented. The feedback gain is obtained and adapted according to a minimum entropy (ME) algorithm. In this method, stabilizing an unstable fixed point of the system Poincare map is achieved by minimizing the entropy of point distribution on the Poincare section. Simulation results show the feasibility of the proposed method in applying the delayed feedback technique for chaos control of spinning disks.  相似文献   

4.
Active chaos control of a tapping mode atomic force microscope (AFM) model via delayed feedback method is presented. The feedback gain is obtained and adapted according to a minimum entropy (ME) algorithm. In this method, stabilizing an unstable fixed point of the system Poincare map is achieved by minimizing the entropy of points distribution on the Poincare section. Simulation results show the feasibility of the proposed method in applying the delayed feedback technique for chaos control of an AFM system.  相似文献   

5.
In this paper, a simple method is proposed for chaos control for a class of discrete-time chaotic systems. The proposed method is built upon the state feedback control and the characteristic of ergodicity of chaos. The feedback gain matrix of the controller is designed using a simple criterion, so that control parameters can be selected via the pole placement technique of linear control theory. The new controller has a feature that it only uses the state variable for control and does not require the target equilibrium point in the feedback path. Moreover, the proposed control method cannot only overcome the so-called “odd eigenvalues number limitation” of delayed feedback control, but also control the chaotic systems to the specified equilibrium points. The effectiveness of the proposed method is demonstrated by a two-dimensional discrete-time chaotic system.  相似文献   

6.
In this paper, we investigate the synchronization of non-autonomous chaotic systems with time-varying delay via delayed feedback control. Using a combination of Riccati differential equation approach, Lyapunov-Krasovskii functional, inequality techniques, some sufficient conditions for exponentially stability of the error system are formulated in form of a solution to the standard Riccati differential equation. The designed controller ensures that the synchronization of non-autonomous chaotic systems are proposed via delayed feedback control and intermittent linear state delayed feedback control. Numerical simulations are presented to illustrate the effectiveness of these synchronization criteria.  相似文献   

7.
A new approach to adaptive control of chaos in a class of nonlinear discrete-time-varying systems, using a delayed state feedback scheme, is presented. It is discussed that such systems can show chaotic behavior as their parameters change. A strategy is employed for on-line calculation of the Lyapunov exponents that will be used within an adaptive scheme that decides on the control effort to suppress the chaotic behavior once detected. The scheme is further augmented with a nonlinear observer for estimation of the states that are required by the controller but are hard to measure. Simulation results for chaotic control problem of Jin map are provided to show the effectiveness of the proposed scheme.  相似文献   

8.
The present article aims to study the projective synchronization between two identical and non?identical time?delayed chaotic systems with fully unknown parameters. Here the asymptotical and global synchronization are achieved by means of adaptive control approach based on Lyapunov–Krasovskii functional theory. The proposed technique is successfully applied to investigate the projective synchronization for the pairs of time?delayed chaotic systems amongst advanced Lorenz system as drive system with multiple delay Rössler system and time?delayed Chua's oscillator as response system. An adaptive controller and parameter update laws for unknown parameters are designed so that the drive system is controlled to be the response system. Numerical simulation results, depicted graphically, are carried out using Runge–Kutta Method for delay?differential equations, showing that the design of controller and the adaptive parameter laws are very effective and reliable and can be applied for synchronization of time?delayed chaotic systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper a nonlinear delayed feedback control is proposed to control chaos in an Atomic Force Microscope (AFM) system. The chaotic behavior of the system is suppressed by stabilizing one of its first-order Unstable Periodic Orbits (UPOs). At first, it is assumed that the system parameters are known, and a nonlinear delayed feedback control is designed to stabilize the UPO of the system. Then, in the presence of model parameter uncertainties, the proposed delayed feedback control law is modified via sliding mode scheme. The effectiveness of the presented methods is numerically investigated by stabilizing the unstable first-order periodic orbit of the AFM system. Simulation results show the high performance of the methods for chaos elimination in AFM systems.  相似文献   

10.
In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.  相似文献   

11.
This paper discusses some basic dynamical properties of the chaotic finance system with parameter switching perturbation, and investigates chaos projective synchronization of the chaotic finance system with the time‐varying delayed feedback controller, which are not fully considered in the existing research. Different from the previous methods, in this paper, the delayed feedback controller is not only time‐varying, but also the time‐varying delay is adaptive. Finally, an illustrate example is provided to show the effectiveness of this method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the synchronization of chaotic systems using an output feedback polynomial controller. As only output system states are considered, it makes the controller design and system analysis more challenging compared to the full-state feedback control schemes. To study the system stability and synthesize the output feedback polynomial controller, Lyapunov stability theory is employed. Sufficient stability conditions are derived in terms of sum of squares (SOS) conditions to guarantee the system stability and aid the controller synthesis. A genetic algorithm-based SOS technique is proposed to find the solution to the SOS conditions and the parameter values of the output feedback polynomial controller. A simulation example is employed to illustrate the effectiveness of the proposed approach.  相似文献   

13.
Feedback control and adaptive control of the energy resource chaotic system   总被引:1,自引:0,他引:1  
In this paper, the problem of control for the energy resource chaotic system is considered. Two different method of control, feedback control (include linear feedback control, non-autonomous feedback control) and adaptive control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. The Routh–Hurwitz criteria and Lyapunov direct method are used to study the conditions of the asymptotic stability of the steady states of the controlled system. The designed adaptive controller is robust with respect to certain class of disturbances in the energy resource chaotic system. Numerical simulations are presented to show these results.  相似文献   

14.
In this paper, the control of Hopf bifurcation in an Internet congestion model with a single link accessed by a single source is presented. By choosing the gain parameter as a bifurcation parameter, it is found that the system without control cannot guarantee a stationary sending rate. Furthermore, Hopf bifurcation occurs when the positive gain parameter of the system exceeds a critical value. For Internet congestion model, a control model based on delayed feedback is proposed and analyzed for delaying the onset of undesirable Hopf bifurcation. Numerical simulations are given to justify the validity of delayed feedback controller in bifurcation control.  相似文献   

15.
This study reveals the essential connections among several popular chaos feedback control approaches, such as delayed feedback control (DFC), stability transformation method (STM), adaptive adjustment method (AAM), parameter adjustment method, relaxed Newton method, and speed feedback control method (SFCM), etc. Meanwhile, the generality and practical applicability of these approaches are evaluated and compared. It is shown that for discrete chaotic maps, STM can be regarded as a kind of predictive feedback control, and AAM is actually a special case of STM which is merely effective for a particular dynamical system. The parameter adjustment method is only a different expression of the relaxed Newton method, and both of them represent just one search direction of STM, i.e., the gradient direction. Moreover, the intrinsic relation between the STM and SFCM for controlling the equilibrium of continuous autonomous systems is investigated, indicating that STM can be viewed as a special form of the SFCM. Finally, both the STM and SFCM are extended to control the chaotic vibrations of non-autonomous mechanical systems effectively.  相似文献   

16.
研究了一类混沌时滞随机神经网络同步控制问题.采用更具一般性的时滞反馈控制器,通过巧妙地构造Lyapunov数,分别得到了均方指数同步和均方渐近同步两个判别准则.仿真例子表明,新准则是有效的.  相似文献   

17.
An adaptive feedback control of linearizable chaotic systems   总被引:5,自引:0,他引:5  
This paper proposes an adaptive feedback controller for a class of chaotic systems. This controller can be used for tracking a smooth orbit that can be a limit cycle or a chaotic orbit of another system. Based on Lyapunov approach, the adaptation law is determined to tune the controller gain vector in order to track a predetermined linearizing feedback control. To demonstrate the efficiency of the proposed scheme, two well-known chaotic systems namely Chua’s circuit and a Lur’e-like system are considered as illustrative examples.  相似文献   

18.
In present paper, a feedback linearization control is applied to control a chaotic pendulum system. Tracking the desired periodic orbits such as period-one, period-two, and period-four orbits is efficiently achieved. Due to the presence of saturation in real world control signals, the stability of controller is investigated in presence of saturation and sufficient stability conditions are obtained. At first feedback linearization control law is designed, then to avoid the singularity condition, a saturating constraint is applied to the control signal. The stability conditions are obtained analytically. These conditions must be investigated for each specific case numerically. Simulation results show the effectiveness and robustness of proposed controller. A major advantage of this method is its shorter chaotic transient time in compare to other methods such as OGY and Pyragas controllers.  相似文献   

19.
The new Lorenz-like attractor, reported by Li et al. (2009) [1], includes a product term of system parameters. It can be predicted that chaotic synchronization of this new chaotic system becomes more complicated by taking account of uncertain system parameters. In this paper, the exponential synchronization between two nearly identical Lorenz-like attractors by applying single input controller associated with system parameter update laws is proposed. Unlike multiple control inputs and state variable feedbacks required in chaotic synchronization in the literature, the proposed single input controller includes only one state variable proportional feedback. Two kinds of system parameter update laws are introduced and sufficient conditions are provided to guarantee exponential stability of both synchronous errors and system parameter errors. In addition, numerical simulations are also performed to verify the effectiveness of presented schemes.  相似文献   

20.
The chaotic behavior of a double-well Duffing oscillator with both delayed displacement and velocity feedbacks under a harmonic excitation is investigated. By means of the Melnikov technique, necessary condition for onset of chaos resulting from homoclinic bifurcation is derived analytically. The analytical results reveal that for negative feedback the presence of time delay lowers the threshold and enlarges the possible chaotic domain in parameter space; while for positive feedback the presence of time delay enhances the threshold and reduces the possible chaotic domain in parameter space, which are further verified numerically through Poincare maps of the original system. Furthermore, the effect of the control gain parameters on the chaotic motion of the original system is studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号