首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel statement of the Fourier filtering problem based on the use of matrix Fourier filters instead of conventional multiplier filters is considered. The basic properties of the matrix Fourier filtering for the filters in the Hilbert–Schmidt class are established. It is proved that the solutions with a finite energy to the periodic initial boundary value problem for the quasi-linear functional differential diffusion equation with the matrix Fourier filtering Lipschitz continuously depend on the filter. The problem of optimal matrix Fourier filtering is formulated, and its solvability for various classes of matrix Fourier filters is proved. It is proved that the objective functional is differentiable with respect to the matrix Fourier filter, and the convergence of a version of the gradient projection method is also proved.  相似文献   

2.
Data assimilation refers to the methodology of combining dynamical models and observed data with the objective of improving state estimation. Most data assimilation algorithms are viewed as approximations of the Bayesian posterior (filtering distribution) on the signal given the observations. Some of these approximations are controlled, such as particle filters which may be refined to produce the true filtering distribution in the large particle number limit, and some are uncontrolled, such as ensemble Kalman filter methods which do not recover the true filtering distribution in the large ensemble limit. Other data assimilation algorithms, such as cycled 3DVAR methods, may be thought of as controlled estimators of the state, in the small observational noise scenario, but are also uncontrolled in general in relation to the true filtering distribution. For particle filters and ensemble Kalman filters it is of practical importance to understand how and why data assimilation methods can be effective when used with a fixed small number of particles, since for many large-scale applications it is not practical to deploy algorithms close to the large particle limit asymptotic. In this paper, the authors address this question for particle filters and, in particular, study their accuracy (in the small noise limit) and ergodicity (for noisy signal and observation) without appealing to the large particle number limit. The authors first overview the accuracy and minorization properties for the true filtering distribution, working in the setting of conditional Gaussianity for the dynamics-observation model. They then show that these properties are inherited by optimal particle filters for any fixed number of particles, and use the minorization to establish ergodicity of the filters. For completeness we also prove large particle number consistency results for the optimal particle filters, by writing the update equations for the underlying distributions as recursions. In addition to looking at the optimal particle filter with standard resampling, they derive all the above results for (what they term) the Gaussianized optimal particle filter and show that the theoretical properties are favorable for this method, when compared to the standard optimal particle filter.  相似文献   

3.
Many digital signal processing applications require linear phase filtering. For applications that require narrow-band linear phase filtering, frequency sampling filters can implement linear phase filters more efficiently than the commonly used direct convolution filter. In this paper, a technique is developed for designing linear phase frequency sampling filters. A frequency sampling filter approximates a desired frequency response by interpolating a frequency response through a set of frequency samples taken from the desired frequency response. Although the frequency response of a frequency sampling filter passes through the frequency samples, the frequency response may not be well behaved between the specific samples. Linear programming is commonly used to control the interpolation errors between frequency samples. The design method developed in this paper controls the interpolation errors between frequency samples by minimizing the mean square error between the desired and actual frequency responses in the stopband and passband. This design method describes the frequency sampling filter design problem as a constrained optimization problem which is solved using the Lagrange multiplier optimization method. This results in a set of linear equations which when solved determine the filter's coefficients.This work was partially funded by The National Supercomputing Center for Energy and the Environment, University of Nevada Las Vegas, Las Vegas, Nevada and by NSF Grant MIP-9200581.  相似文献   

4.
In this paper, the filtering problem is investigated for a class of nonlinear discrete-time stochastic systems with state delays. We aim at designing a full-order filter such that the dynamics of the estimation error is guaranteed to be stochastically, exponentially, ultimately bounded in the mean square, for all admissible nonlinearities and time delays. First, an algebraic matrix inequality approach is developed to deal with the filter analysis problem, and sufficient conditions are derived for the existence of the desired filters. Then, based on the generalized inverse theory, the filter design problem is tackled and a set of the desired filters is explicitly characterized. A simulation example is provided to demonstrate the usefulness of the proposed design method.  相似文献   

5.
A problem when filtering measurements of the sea-surface level is that the highest values, which are also the most interesting, might get lost. The rainflow filter is an alternative to the band-pass filters traditionally used. In this paper we investigate the properties of rainflow filtering by examining the distributions of some characteristic wave parameters. These distributions are calculated by means of the regression-approximation method which requires as input a spectral density. An approximation of the rainflow filter in the frequency domain, obtained by spectral simulation, is therefore used. The rainflow filter yields results which are closer to the distributions obtained from the original spectrum with high-frequency contents.  相似文献   

6.
Similarity search in texts, notably in biological sequences, has received substantial attention in the last few years. Numerous filtration and indexing techniques have been created in order to speed up the solution of the problem. However, previous filters were made for speeding up pattern matching, or for finding repetitions between two strings or occurring twice in the same string. In this paper, we present an algorithm called Nimbus for filtering strings prior to finding repetitions occurring twice or more in a string, or in two or more strings. Nimbus uses gapped seeds that are indexed with a new data structure, called a bi-factor array, that is also presented in this paper. Experimental results show that the filter can be very efficient: preprocessing with Nimbus a data set where one wants to find functional elements using a multiple local alignment tool such as Glam, the overall execution time can be reduced from 7.5 hours to 2 minutes.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(9-10):2422-2434
An exact, closed-form minimum variance filter is designed for a class of discrete time uncertain systems which allows for both multiplicative and additive noise sources. The multiplicative noise model includes a popular class of models (Cox-Ingersoll-Ross type models) in econometrics. The parameters of the system under consideration which describe the state transition are assumed to be subject to stochastic uncertainties. The problem addressed is the design of a filter that minimizes the trace of the estimation error variance. Sensitivity of the new filter to the size of parameter uncertainty, in terms of the variance of parameter perturbations, is also considered. We refer to the new filter as the ‘perturbed Kalman filter’ (PKF) since it reduces to the traditional (or unperturbed) Kalman filter as the size of stochastic perturbation approaches zero. We also consider a related approximate filtering heuristic for univariate time series and we refer to filter based on this heuristic as approximate perturbed Kalman filter (APKF). We test the performance of our new filters on three simulated numerical examples and compare the results with unperturbed Kalman filter that ignores the uncertainty in the transition equation. Through numerical examples, PKF and APKF are shown to outperform the traditional (or unperturbed) Kalman filter in terms of the size of the estimation error when stochastic uncertainties are present, even when the size of stochastic uncertainty is inaccurately identified.  相似文献   

8.
We consider the problem of optimal filtering of unmeasured variables of a linear dynamical system by linear stationary filters. The filtering performance functional to be minimized is given by the maximum relative integral filtering error over all external perturbations as well as initial perturbations caused by the unknown initial conditions of the system. We show that the optimal filter implements a trade-off between an H -optimal filter and a minimax observer.  相似文献   

9.
Ever since the technique of the Kalman-Bucy filter was popularized, there has been an intense interest in finding new classes of finite-dimensional recursive filters. In the late seventies, the concept of the estimation algebra of a filtering system was introduced. It has been the major tool in studying the Duncan-Mortensen-Zakai equation. Recently the second author has constructed general finite-dimensional filters which contain both Kalman-Bucy filters and Benes filter as special cases. In this paper we consider a filtering system with arbitrary nonlinear driftf(x) which satisfies some regularity assumption at infinity. This is a natural assumption in view of Theorem 10 of [DTWY] in a special case. Under the assumption on the observation h(x)=constant, we propose writing down the solution of the Duncan-Mortensen-Zakai equation explicitly.This research was supported by Army Grant DAAH-04-93G-0006.  相似文献   

10.
The problem of delay-dependent parameter-dependent H filtering for state estimation of a class of LPV systems with multiple constant time delays in the state vector is investigated. With the help of polynomially parameter-dependent quadratic (PPDQ) functions and a suitable change of variables, the required sufficient conditions with high precision are established in terms of delay-dependent parameter-independent linear matrix inequalities (LMIs) for the existence of the desired H filters. The explicit expression of the delay-dependent parameter-dependent H filters is derived to satisfy both asymptotic stability and a prescribed level of disturbance attenuation. Accordingly, the designed filter will have the ability to track the plant states in the presence of external disturbances. Two numerical examples are provided to demonstrate the validity of the proposed design approach. Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 61, Optimal Control, 2008.  相似文献   

11.

This paper presents reduced-order nonlinear filtering schemes based on a theoretical framework that combines stochastic dimensional reduction and nonlinear filtering. Here, dimensional reduction is achieved for estimating the slow-scale process in a multiscale environment by constructing a filter using stochastic averaging results. The nonlinear filter is approximated numerically using the ensemble Kalman filter and particle filter. The particle filter is further adapted to the complexities of inherently chaotic signals. In particle filters, an ensemble of particles is used to represent the distribution of the state of the hidden signal. The ensemble is updated using observation data to obtain the best representation of the conditional density of the true state variables given observations. Particle methods suffer from the “curse of dimensionality,” an issue of particle degeneracy within a sample, which increases exponentially with system dimension. Hence, particle filtering in high dimensions can benefit from some form of dimensional reduction. A control is superimposed on particle dynamics to drive particles to locations most representative of observations, in other words, to construct a better prior density. The control is determined by solving a classical stochastic optimization problem and implemented in the particle filter using importance sampling techniques.

  相似文献   

12.
本文证明了层叠滤的两个重要性质,即自包含性与压缩性。继而研究了更广一类的窗滤波,并证明了具有自包含性的窗滤波就是层叠滤波。  相似文献   

13.
The accuracy of estimating the variance of the Kalman-Bucy filter depends essentially on disturbance covariance matrices and measurement noise. The main difficulty in filter design is the lack of necessary statistical information about the useful signal and the disturbance. Filters whose parameters are tuned during active estimation are classified with adaptive filters. The problem of adaptive filtering under parametric uncertainty conditions is studied. A method for designing limiting optimal Kalman-Bucy filters in the case of unknown disturbance covariance is presented. An adaptive algorithm for estimating disturbance covariance matrices based on stochastic approximation is described. Convergence conditions for this algorithm are investigated. The operation of a limiting adaptive filter is exemplified.  相似文献   

14.
The paper presents fast algorithms for designing finite impulse response (FIR) notch filters. The aim is to design a digital FIR notch filter so that the magnitude of the filter has a deep notch at a specified frequency, and as the notch frequency changes, the filter coefficients should be able to track the notch fast in real time. The filter design problem is first converted into a convex optimization problem in the autocorrelation domain. The frequency response of the autocorrelation of the filter impulse response is compared with the desired filter response and the integral square error is minimized with respect to the unknown autocorrelation coefficients. Spectral factorization is used to calculate the coefficients of the filter. In the optimization process, the computational advantage is obtained by exploiting the structure of the Hessian matrix which consists of a Toeplitz plus a Hankel matrix. Two methods have been used for solving the Toeplitz‐plus‐Hankel system of equations. In the first method, the computational time is reduced by using Block–Levinson's recursion for solving the Toeplitz‐plus‐Hankel system of matrices. In the second method, the conjugate gradient method with different preconditioners is used to solve the system. Comparative studies demonstrate the computational advantages of the latter. Both these algorithms have been used to obtain the autocorrelation coefficients of notch filters with different orders. The original filter coefficients are found by spectral factorization and each of these filters have been tested for filtering synthetic as well as real‐life signals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The purpose of this article is to compute an explicit formula for the unnormalized conditional density for the filter associated with a nonlinear filtering problem with correlated noises and a signal process with nonlinear terms in the drift. This article extends the result of Daum to nonlinear filtering systems with correlated noises and incorporates both the Kalman–Bucy and Bene? filters as particular cases.  相似文献   

16.
This paper studies the question of filtering and maximizing terminal wealth from expected utility in partial information stochastic volatility models. The special feature is that the only information available to the investor is the one generated by the asset prices, and the unobservable processes will be modeled by stochastic differential equations. Using the change of measure techniques, the partial observation context can be transformed into a full information context such that coefficients depend only on past history of observed prices (filter processes). Adapting the stochastic non-linear filtering, we show that under some assumptions on the model coefficients, the estimation of the filters depend on a priori models for the trend and the stochastic volatility. Moreover, these filters satisfy a stochastic partial differential equations named “Kushner–Stratonovich equations”. Using the martingale duality approach in this partially observed incomplete model, we can characterize the value function and the optimal portfolio. The main result here is that, for power and logarithmic utility, the dual value function associated to the martingale approach can be expressed, via the dynamic programming approach, in terms of the solution to a semilinear partial differential equation which depends on the filters estimate and the volatility. We illustrate our results with some examples of stochastic volatility models popular in the financial literature.  相似文献   

17.
This article introduces an inhomogeneous uncertainty principle for digital lowpass filters. The measure for uncertainty is a product of two factors evaluating the frequency selectivity in comparison with the ideal filter and the effective length of the filter in the digital domain, respectively. We derive a sharp lower bound for this product in the class of filters with so-called finite effective length and show the absence of minimizers. We find necessary and certain sufficient conditions to identify minimizing sequences. When the class of filters is restricted to a given maximal length, we show the existence of an uncertainty minimizer. The uncertainty product of such minimizing filters approaches the unrestricted infimum as the filter length increases. We examine the asymptotics and explicitly construct a sequence of finite-length filters with the same asymptotics as the sequence of finite-length minimizers.  相似文献   

18.
The popularity of state-space models comes from their flexibilities and the large variety of applications they have been applied to. For multivariate cases, the assumption of normality is very prevalent in the research on Kalman filters. To increase the applicability of the Kalman filter to a wider range of distributions, we propose a new way to introduce skewness to state-space models without losing the computational advantages of the Kalman filter operations. The skewness comes from the extension of the multivariate normal distribution to the closed skew-normal distribution. To illustrate the applicability of such an extension, we present two specific state-space models for which the Kalman filtering operations are carefully described.  相似文献   

19.
We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.  相似文献   

20.
In envelope-constrained filtering, the filter is optimized subject to the constraint that the filter response to a given signal lies within a specified envelop or mask. In this note, we develop an efficient method for solving a class of nonsmooth optimization problems which covers the envelope- constrained filtering problem as a special case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号