首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aqueous suspensions of V2O5 ribbons are one of the very few examples of mineral liquid crystals. In the concentrated regime, we show that these ribbons organize in a biaxial nematic gel phase. A Couette shear cell was used to produce a well oriented sample for in situ synchrotron X-ray scattering studies. We observed two perpendicular anisotropic sections of reciprocal space, which proves the biaxial symmetry of the nematic order. The thermodynamic and flow properties of the biaxial nematic are well described by hard-core theories. We suggest the use of a shear geometry to produce and investigate single domains of other biaxial nematics, reported but still questioned in the literature. Received 26 May 1999  相似文献   

2.
We have studied the rheology and the conformation of stretched comb-like liquid-crystalline polymers. Both the influence of the comb-like structure and the specific effect of the nematic interaction on the dynamics are investigated. For this purpose, two isomers of a comb-like polymetacrylate polymer, of well-defined molecular weights, were synthesized: one displays a nematic phase over a wide range of temperature, the other one has only an isotropic phase. Even with high degrees of polymerization N, between 40 and 1000, the polymer chains studied were not entangled. The stress-strain curves during the stretching and relaxation processes show differences between the isotropic and nematic comb-like polymers. They suggest that, in the nematic phase, the chain dynamics is more cooperative than for a usual linear polymer. Small-angle neutron scattering has been used in order to determine the evolution of the chain conformation after stretching, as a function of the duration of relaxation t r. The conformation can be described with two parameters only: , the global deformation of the polymer chain, and p, the number of statistical units of locally relaxed sub-chains. For the comb-like polymer, the chain deformation is pseudo-affine: is always smaller than (the deformation ratio of the whole sample). In the isotropic phase, has a constant value, while pincreases as tr. This latter behavior is not that expected for non-entangled chains, in which p varies as t r 1/2 (Rouse model). In the nematic phase, decreases as a stretched exponential function of t r, while p remains constant. The dynamics of the comb-like polymers is discussed in terms of living clusters from which junctions are produced by interactions between side chains. The nematic interaction increases the lifetime of these junctions and, strikingly, the relaxation is the same at all scales of the whole polymer chain. Received 5 May 1999 and Received in final form 18 October 1999  相似文献   

3.
We have investigated the simple shear flow behavior of wormlike micelles using small-angle neutron scattering and mechanical measurements. Ternary surfactant solutions made of cetylpyridinium chloride, hexanol and brine (0.2 M NaCl) and hereafter abbreviated as CPCl-Hex were studied in the concentrated regime, . In a preliminary report (Berret et al. [#!ref16!#]), the discontinuity of slope observed in the shear stress versus shear rate curve was interpreted in terms of first-order phase transition between an isotropic state and a shear-induced nematic state ( transition). At the transition rate, , the solution exhibits a macroscopic phase separation into viscous and fluid layers (inhomogeneous shear flow). Above a second characteristic shear rate, the flow becomes homogeneous again, the sheared solution being nematic only. The neutron patterns obtained in the two-state inhomogeneous region have been re-examined. Based on a consistent analysis of both orientational and translational degrees of freedom related to the wormlike micelles, we emphasize new features for the transition. In the present paper, the shear rate variations of the relative proportions of each phase in the two-state region, as well as the viscosity ratio between isotropic and nematic phases are derived. We demonstrate in addition that slightly above the transition rate, the shear induced nematic phase is already strongly oriented, with an order parameter P 2 = 0.65. The orientational state is that of a nematic flow-oriented monodomain. Finally, from the locations of the neutron scattering maxima for each isotropic and nematic contributions, we evaluate the concentrations for each phase and and derived a dynamical phase diagram of CPCl-Hex, in terms of the stress versus and . According to the classification by Schmitt et al. [#!ref22!#], the transition observed in CPCl-Hex micellar solutions could result from a positive flow-concentration coupling, in agreement with the observed monotonically increasing shear stress in the two-phase region. Received: 16 February 1998 / Revised: 18 February 1998 / Accepted: 24 May 1998  相似文献   

4.
Chord length distributions describe size, shape and spatial arrangement of geometrical objects (particles). The chord length distribution is in principle proportional to the second derivative of the correlation function of small-angle scattering. It is calculable from a relative measurement of the scattering intensity I(h). In structure research, the characterization of numerous particle systems can be achieved by comparing experimental chord distributions with theoretical ones, provided the latter are available with sufficiently high precision for a lot of fundamental, universal shapes. Both sides of this concept are exemplified: – the step from a relative measurement of the scattering intensity of an isotropic two-phase sample to the chord length distribution (errors in and in , limited h-interval, corresponding to the region (1-2) nm < r in real space, must be observed); as well as the geometric matter of calculation of chord distributions as fingerprints for basic geometric figures, including the non-convex case. Received 15 March 1999 and Received in final form 26 April 2000  相似文献   

5.
A lyotropic system, consisting of a lecithin (DMPC) and a non-ionic surfactant (C12E5) in water was studied. The system exhibits a lamellar-to-nematic phase transition. The nematic phase appears as the temperature is decreased and only exists in a very limited temperature and concentration range, for specific lipid-to-surfactant ratios. While a lamellar phase is found at higher temperatures in both mixed and pure C12E5 systems, the transition to the nematic phase at lower temperatures coincides with a micellar phase in the pure C12E5 system. The transition appears to be driven by the strong temperature dependence of the surfactant film spontaneous curvature. The structural properties of the lamellar phase close to the lamellar-to-nematic boundary have been studied by polarised light microscopy and small-angle neutron and X-ray scattering experiments. The signature of a helical defect with Burgers vector of magnitude 2 is apparent in our data, close to the lamellar-to-nematic phase transition. The proliferation of screw dislocations in the lamellar phase might be a plausible mechanism for driving this transition. Received 6 July 1999 and Received in final form 17 April 2000  相似文献   

6.
Using small-angle X-ray scattering, the repeat distance vs. temperature is measured for a homologous series of multilamellar vesicles of lecithins with varying acyl chain length in excess water condition around the lipid main transition. A systematic chain length dependence is found which is in accordance with a bending rigidity renormalization and critical unbinding of the lamellae close to the transition, as previously suggested in H?nger et al. [Phys. Rev. Lett. 72, 3911 (1994)]. Received 13 January 1999 and Received in final form 6 September 1999  相似文献   

7.
In terms of the modified Sturm-Liouville theorem, the Levinson theorem for the one-dimensional Klein-Gordon equation with a symmetric potential V(x) is established. It is shown that the number N+ (N-) of bound states with even (odd) parity is related to the phase shift of the scattering states with the same parity at zero momentum as and The solution of the one-dimensional Klein-Gordon equation with the energy M or -M is called as a half bound state if it is finite but does not decay fast enough at infinity to be square integrable. Received 22 December 1999  相似文献   

8.
Elastic scattering cross-sections for Pd, Ag, Cd, In, Sn, Sb, Pt, Au and Pb are measured at an angle of 90 in the X-ray region 5.41 keV. These energies fall between the high-energy side of the L- and M-shell absorption edges of the atoms considered. The present atomic region is significant for solid X-rays to assess the contribution of resonance and solid-state environmental effects. Also it is the anomalous scattering region for many of the atoms of the periodic table. Experimental results are compared with theoretical calculations based on form factor formalisms including the anomalous corrections and available recent S-matrix values. Based on the experimental evidence, the present results indicate the influence of solid-state environmental effects, the importance of anomalous corrections nearer to absorption edges, the correctness of revised high-energy limit values, the superiority of S-matrix predictions over form factor values on measured elastic scattering cross-sections in the X-ray regime and also show the resonance behavior around K, L and M absorption edges. Received: 27 January 1998 / Received in final form: 4 January 1999  相似文献   

9.
The Frank elasticity constants which describe splay (K 1), twist (K 2), and bend (K 3) distortion modes are investigated for 4-n-pentyl-4'-cyanobiphenyl (5CB) in the nematic liquid crystal. The calculations rest on statistical-mechanical approaches where the absolute values of K i (i=1,2,3) are dependent on the direct correlation function (DCF) of the corresponding nematic state. The DCF was determined using the pair correlation function by solving the Ornstein-Zernike equation. The pair correlation function, in turn, was obtained from molecular dynamics (MD) trajectory. Three different approaches for calculations of the elasticity constants were employed based on different level of approximation about the orientational order and molecular correlations. The best agreement with experimental values of elasticity constants was obtained in a model where the full orientational distribution function was used. In addition we have investigated the approximation about spherical distribution of the intermolecular vectors in the nematic phase, often used in derivation of various mean-field theories and employed here for the construction of the DCF. We found that this assumption is not strictly valid, in particular a strong deviation from the isotropic distribution is observed for short intermolecular distances. Received 22 March 2000 and Received in final form 9 June 2000  相似文献   

10.
Free energy of semiflexible polymers and structure of interfaces   总被引:1,自引:0,他引:1  
The free energy of semiflexible polymers is calculated as a functional of the compositional scalar order parameter and the orientational order parameter of second-rank tensor Sij on the basis of a microscopic model of wormlike chains with variable segment lengths. We use a density functional theory and a gradient expansion to evaluate the entropic part of the free energy, which is given in a power series of .The interaction term of the free energy is derived with a random phase approximation. For the rigid rod limit, the nematic-isotropic transition point is given by , N and w being the degree of polymerization and the anisotropic interaction parameter, respectively, and the degree of ordering at the transition point is 0.33448. We also find that the contour length of polymer chains becomes larger in a nematic phase than in an isotropic phase. Interface profiles are obtained numerically for some typical cases. In the neighborhood of isotropic-isotropic interfaces, polymer chains tend to align parallel to the interface on the polymer-rich side and perpendicular on the poor side. When an isotropic region and a nematic region coexist, orientational order parallel to the interface is preferred in the nematic region. Received: 28 May 1998 / Revised: 12 August 1998 / Accepted: 8 September 1998  相似文献   

11.
In a previous neutron scattering study, we had observed that the TA phonon softening in L12-ordered ferromagnetic Fe72Pt28 Invar is pronounced at the zone boundary M-point and leads to an antiferrodistortive phase transition at low temperatures. Here, we report on similar neutron scattering investigations on two ordered crystals with higher Fe content to investigate the relation between the TA phonon softening and the martensitic transformation, which occurs in Fe-rich ordered Fe-Pt. We find that the TA phonon softening, especially at the M-point zone boundary, does not depend on the composition of the investigated crystals. In Fe74.5Pt25.5, however, the antiferrodistortive phase transition temperature is enhanced due to tetragonal strain preceding the martensitic transition. In Fe77Pt23 a precursor driven premartensitic phase transition is not observed. The structure of the martensite is, however, influenced by the soft mode lattice instability of the austenite. This would explain the origin of structural details found previously for Fe3Pt thermoelastic martensite. Received 18 January 1999 and Received in final form 11 March 1999  相似文献   

12.
In cell culture, liquid crystal analogues are formed by elongated, migrating, and interacting amoeboid cells. An apolar nematic liquid crystal analogue is formed by different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (=fat cells), etc. The nematic analogue is quite well described by i) a stochastic machine equation responsible for cell orientation and ii) a self-organized extracellular guiding signal, E2, which is proportional to the orientational order parameter as well as to the cell density. The investigations were mainly made with melanocytes. The transition to an isotropic state analogue can be accomplished either by changing the strength of interaction (e.g. variation of the cell density) or by influencing the cellular machinery by an externally applied signal: i) An isotropic gaseous state analogue is observed at low cell density (melanocytes/mm^2) and a nematic liquid crystal state analogue at higher cell density. ii) The nematic state analogue disappears if the bipolar shaped melanocytes are forced to become a star-like shape (induced by colchicine or staurosporine). The analogy between nematic liquid crystal state analogue formed by elongated, migrating and interacting cells and the nematic liquid crystal phase formed by interacting elongated molecules is discussed. Received 2 August 1999 and Received in final form 5 January 2000  相似文献   

13.
We report on the thin-film behaviour of a polyacrylate with phenyl benzoate mesogenic side groups and a narrow polydispersity. Depending on the degree of polymerisation, these polymers show a nematic, a smectic-A d, a re-entrant nematic and a C phase with a two-dimensional monoclinic lattice. X-ray reflectivity and atomic-force microscopy have been used to characterize the structure and surface morphology. The system exhibits two stable side-chain packing configurations with incommensurate spacings that can be both stabilized at a free surface. Thin films in the nematic phase show a structural dewetting induced by the growth of surface domains of the C phase. Additionally, surface-induced ripples with a nanoscale lateral period form at the air-film interface. We attribute these patterns to a coupling between the local liquid crystalline ordering of the mesogenic side groups and the surface curvature energy. Received 28 February 2001 and Received in final form 6 August 2001  相似文献   

14.
Small-angle X-ray scattering (SAXS) was performed on a series of Electric Double-Layered Magnetic Fluids (EDL-MF) composed of ferrite type-- CoFe2O4, MnFe2O4, ZnFe2O4, NiFe2O4 and CuFe2O4--nanoparticles of different crystalline sizes ( D XR ranging from 40 to 139?, as determined by X-ray diffraction). The information concerning the scattering objects was obtained through the analysis of the distance distribution function p(r) and of the size distribution function D(R), both retrieved from SAXS data. The results show that EDL-MF, in the absence of an applied magnetic field, are composed of small magnetic particle aggregates in solution. These agglomerates are elongated in one direction (chain-like) with the longest dimension varying from 240 to 330?. The cross-section size is of the order of D XR. The data also demonstrate that the maximum dimension of these aggregates is independent of the ferrite type. On the other hand, the number of aggregated magnetic particles is nanoparticle-size-dependent. Accordingly, larger ferrite-type nanoparticles as those with D XR = 139? form aggregates composed of 2-3 magnetic particles, whereas smaller ones with D XR 40? form agglomerates of about 6 magnetic particles in solution. As the nanoparticle size is reduced, it might increase the particle surface defects. Such occurrence would affect the particle surface charge density, which could reduce the electrostatic screening, favoring the agglomeration phenomenon. Received 28 February 2000 and Received in final form 28 August 2000  相似文献   

15.
Levinson theorem for Dirac particles in one dimension   总被引:1,自引:0,他引:1  
The scattering of Dirac particles by symmetric potentials in one dimension is studied. A Levinson theorem is established. By this theorem, the number of bound states with even(odd)-parity, n+ (n-), is related to the phase shifts [] of scattering states with the same parity at zero momentum as follows: The theorem is verified by several simple examples. Received 26 August 1998 and Received in final form 18 January 1999  相似文献   

16.
We extend the random anisotropy nematic spin model to study nematic-isotropic transitions in porous media. A complete phase diagram is obtained. In the limit of relative low randomness the existence of a triple point is predicted. For relatively large randomness we have found a depression in temperature at the transition, together with a first order transition which ends at a tricritical point, beyond which the transition becomes continuous. We use this model to investigate the motion of the nematic-isotropic interface. We assume the system to be isothermal and initially quenched into the metastable régime of the isotropic phase. Using an appropriate form of the free energy density we obtain the domain wall solutions of the time-dependent Ginzburg-Landau equation. We find that including a random field leads to smaller velocity of the interface and to larger interface width. Received 12 November 1998 and Received in final form 15 March 1999  相似文献   

17.
We present the studies of the phase transition behaviors of V2O3 thin film using temperature‐dependent Raman scattering spectroscopy. Our results show that in both the cooling and heating processes of V2O3 thin film, the phase transition occurs gradually but not suddenly, contrary to that in single crystal. The coexistence of both the metal and insulator phases with co‐phasing ΔTc larger than 30 K is observed in both the cooling and heating processes. We discuss that this large co‐phasing ΔTc should be distinguished with the large hysteresis ΔTh reported in nanostructures. In addition, our discussions indicate that co‐phasing ΔTc and hysteresis ΔTh would be mainly correlated with stress and defect states in sample, respectively. Furthermore, our Raman analyses suggest that stress would also induce phase transitions in V2O3, and the stress (pressure)‐induced phase transitions would behave differently comparing with the temperature‐induced transitions under normal pressure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we discuss the equilibrium phases and collapse transitions of a lyotropic nematic gel immersed in an isotropic solvent. A nematic gel consists of a cross-linked polymer network with rod-like molecules embedded in it. Upon decreasing the quality of the solvent, we find that a lyotropic nematic gel undergoes a discontinuous volume change accompanied by an isotropic-nematic transition. We also present phase diagrams that these systems may exhibit. In particular, we show that coexistence of two isotropic phases, of two nematic phases, or of an isotropic and a nematic phase can occur. Received 15 February 2002 and Received in final form 14 June 2002  相似文献   

19.
Using a light-beating technique we have measured the damping time of thermal fluctuations of the nematic director for the so called cylindrical or calamitic nematic (NC) phase of the lyotropic system K-laurate/decanol/. By varying the scattering angle in suitable geometries, we have been able to estimate the orientational diffusivities associated to the three pure deformations of splay, twist and bend. A former measurement made in the disk-like ND phase of the same system yielded a large deviation between the splay and twist diffusivities. The effect was then attributed to induced flows, or backflow, which could be responsible for the reduction of the splay viscosity. In fact, this is the analogous effect, for disks, to the one recognized since long time ago arriving for rod-like molecules in a classical nematic, though in this case it is associated with bend deformations. The analogy comes about thanks to the interchange of the role played by disks and cylinders for, respectively, splay and bend fluctuations.The measurements reported here provide a new test on the applicability of the backflow model to a nematic system composed of micelles, that is, aggregates made of amphiphilic (surfactant) molecules, in its cylindrical-like variant, i.e. the NC phase. In addition, the comparative study made here with the previous results existing in the literature for the ND phase, allows us to conjecture on structural issues concerning lyotropic nematics. Received: 29 April 1998 / Revised: 19 August 1998 / Accepted: 31 August 1998  相似文献   

20.
The spin magnetic susceptibility of the p-d model is calculated by means of a perturbation theory in the hybridization term V through a generalized cumulant expansion (GCE). The analysis is approached from the paramagnetic metallic phase. The results qualitatively reproduce some unusual magnetic properties in the normal state of the hole-doped cuprates, supporting the scenario of a Van Hove singularity near the Fermi level. Received 15 October 1998 and Received in final form 24 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号