首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we developed a generalized and greener composite-surfactants-assisted-solvothermal process (CSSP) to produce colloidal nanoparticles of metal sulfides. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectra (XPS) revealed that single-molecular-layer type of MoS2 nanoparticles with diameter 6–10 nm were successfully synthesized. The molecular structure model of the capped MoS2 nanoparticles was suggested through further examination by infrared spectra. Hexagonal CdS nanocrystals with spherical, triangle, and hollow sphere shapes were controllably synthesized by varying the experimental conditions. A possible in-situ reduction–sulfidation mechanism was proposed for the formation of Ag2S nanocrystals, where the metal ions were reduced to metallic nanoparticles before the generation of sulfides. The obtained nanocrystals through this CSSP approach could provide the building blocks for the bottom-up approach to nanoscale fabrication in nanoscience and nanotechnology.  相似文献   

2.
The Fe2O3/Ag core-shell composite nanoparticles were successfully prepared via a simple method at low temperature. X-ray diffraction data revealed the formation of core-shell composite nanoparticles, with Fe2O3 as the core and silver as the shell. The results from the transmission electron microscopy and scan electron microscopy further indicated that the composite nanoparticles were spherical with a core diameter and shell thickness of 26.0 nm and 13.5 nm, respectively. Magnetic measurements showed that the composite nanoparticles exhibited a typical ferromagnetic behavior, a specific saturation magnetization of 0.95 emu/g and an intrinsic coercivity of 104.0 Oe at room temperature. For a standard two-probe analysis at room temperature, the composite nanoparticles showed a typical conductive behavior and its conductivity was about 3.41 S/m. Moreover, this present synthesis method of Fe2O3/Ag core-shell composite nanoparticles shows an easy processing and does not need high-temperature calcining to attain the final product, which can be applied in a variety of areas, including catalysis, medicine, photonics, and new functional device assemblies.  相似文献   

3.
Hydrous niobium oxide (Nb2O5·nH2O) nanoparticles had been successfully prepared by water-in-oil microemulsion. They were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTG), Fourier transform infrared spectroscopy (FTIR), BET surface area measurement, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the nanoparticle was exactly Nb2O5·nH2O with spherical shape. Their BET surface area was 60 m2 g−1. XRD results showed that Nb2O5·nH2O nanoparticles with crystallite size in nanometer scale were formed. The crystallinity and crystallity size increased with increasing annealing temperature. TT-phase of Nb2O5 was obtained when the sample is annealed at 550 °C.  相似文献   

4.
Zinc sulfide (ZnS) microspheres were synthesized by a self‐template hydrothermal route using thiourea as sulphur source. The formation of these hollow spheres was mainly attributed to the oriented aggregation of ZnS nanocystals around the gas‐liquid interface between gas (H2S, NH3, or CO2) and water followed by an Ostwald ripening process. The gas bubbles of H2S, NH3, or CO2 produced during the reaction might play a soft‐template to form ZnS hollow microspheres. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), electron diffraction (ED), and photoluminescence (PL). The crystal structure of prepared ZnS microspheres is hexagonal phase polycrystalline. The average microspheres diameter is 1.5 ‐ 6 µm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Xin He  Xiujian Zhao  Baoshun Liu 《Journal of Non》2008,354(12-13):1267-1271
The TiO2 thin films loaded with silver nanoparticles were prepared on soda-lime glass substrates by a photoinduced deposition method. The TiO2 films immersed in AgNO3 solution were vertically irradiated by UV light with center wavelength of 365 nm for 60 h. The as-produced films were characterized by X-ray diffraction (XRD), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The studies show that the film after UV excitation is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. A possible growth mechanism of silver nanoparticles on TiO2 thin films under UV irradiation was proposed. The charge carriers of TiO2 semiconductor are generated by photoexcitation. Owing to the conduction band position of TiO2 which is above the standard potential of Ag+/Ag, the generated electrons could transfer from the conduction band to Ag+ adsorbed on the surface of the TiO2 films. Therefore, the Ag+ was finally reduced into a Ag atom, which could preferentially localize in the grain boundaries of TiO2 particles due to high surface free energy there. With the irradiation time extended, silver nanoparticles were shaped into certain morphologies on the surface of the TiO2 films.  相似文献   

6.
Glass–ceramics with the composition 2Fe2O3.1ZnO.1MgO.96SiO2 [4ZnMgFe] and 2Fe2O3.2ZnO.3MgO.93SiO2 [7ZnMgFe] (mol%) were prepared using the sol–gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), electron diffraction (ED) and Mössbauer spectroscopy (MS) were used to investigate the glass–ceramics structure. The samples contain ferrite nanoparticles embedded in a glass matrix. However, zinc ferrite nanoparticles seems to be the preferential crystalline phase formed. The amount of ferrite particles depends on treatment temperature and sample composition. The Mössbauer spectroscopy measurements show that ferrite nanoparticles can exhibit a ferrimagnetic behaviour combined with superparamagnetism.  相似文献   

7.
Spherical bismuth vanadate particles are self-assembled from aqueous Bi(NO3)3 and NH4VO3 solutions by adjusting pH and tuning the amount of surfactant sodium dodecyl sulfate (SDS) via facile hydrothermal method. The BiVO4 samples were characterized by X-ray diffraction (XRD) and the peaks suited well with the pure phase monoclinic scheelite BiVO4. Field emission scanning electron microscopy (SEM) showed the average size of the spherical particles was 5 μm and the assembling stages in the hydrothermal synthesis process were recorded. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) revealed the nanoparticles were single crystal. FT-IR spectroscopy test results demonstrated there was no SDS left in the samples. The mechanism of the self-assembling has also been proposed.  相似文献   

8.
NbSe3 nanofibers and NbSe2 sheets were prepared by solid state reaction. The as‐prepared products are characterized by powder X‐ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that the obtained NbSe3 nanofibers have a diameter in the range of 100–300 nm and length about 10 μm, while the NbSe2 sheets have a hexagon structure. The tribological properties of the as‐prepared NbSex powders as additives in HVI500 base oil were investigated on UMT‐2 multispecimen tribo‐tester. The wear scars were measured by VEECO WYKO NT1100 non‐contact optical profile testing instrument. It is found that the addition of both NbSex nanofibers/sheets improves the tribological properties of base oil. Furthermore, NbSe2 sheets exhibit better friction reduction and wear resistance properties than NbSe3 nanofibers in HVI500 base oil. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
In this paper, long silver sulfide nanowires have been successfully synthesized by microwave irradiation-assisted method. The results indicated that nanowires with diameters of about 100 nm and lengths of up to several dozens of micrometers can be obtained through this method. The selected area electron diffraction pattern indicated that the Ag2S nanowires thus formed were amorphous. The mechanism for the microwave irradiation synthesis of Ag2S nanowires was proposed.  相似文献   

10.
Large‐scale high‐quality BaMoO4 nanocrystals have been synthesized in aqueous solutions under mild conditions with citrate as a simple additive. The crystals have bone‐like, spindle‐like and wheatear‐like morphologies assembled from nanoparticles, nanofibers and have been characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results showed that experimental parameters had great influences on the shape evolution of products. The adjustment of these parameters such as room temperature stirring time, reaction temperature and reaction time of hydrothermal reaction, can lead to obvious morphology changes of products, and the growth mechanism has been proposed. Room‐temperature photoluminescence indicated that the as‐prepared BaMoO4 nanocrystals had a strong blue emission peak at 481.5 nm. This facile route could be employed to synthesize more promising nanomaterials with interesting self‐assembly structures. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
《Journal of Non》2007,353(13-15):1431-1436
One of the recent applications of thin chalcogenide films is in rewritable optical data recording. This technology is based on reversible phase transition between crystalline and amorphous state. Currently, the primary materials for rewritable optical are Ge–Sb–Te and Ag–In–Sb–Te alloys, but materials research still continues due to the need for increased storage capacity and data recording rates. (Ag)–Sb–S thin films were prepared by thermal evaporation of Sb33S67 bulk and optically induced diffusion and dissolution of thermally evaporated Ag films. Prepared samples were characterized by electron microprobe (SEM-EDX), differential scanning calorimetry (DSC) and by UV–Vis–NIR and Raman spectroscopy. The phase-change recording processes in (Ag)–Sb–S films were carried out by photocrystallization experiments done by Ar+ ion laser. The laser exposed dots were studied by scanning electron microscopy (SEM) and transmission optical microscopy. Micro X-ray diffraction (μ-XRD) was used for the exposed dots crystallinity study. Photocrystallization kinetic curves (showing the dependence of optical transmission on laser exposure time) were also established. Crystallization mechanism of Agx(Sb0.33S0.67)100−x samples was discussed.  相似文献   

12.
The thermodynamics of CdSe quantum dots embedded in a glass matrix is of great interest because of the numerous applications as optical materials. In this study, the energetics and stability of CdSe quantum dots in a borosilicate glass matrix is investigated as a function of size using high-temperature oxide melt solution calorimetry. CdS0.1Se0.9 nanoparticles (1-40 nm) embedded in glass were analyzed by photoluminescence spectroscopy, electron microprobe, X-ray fluorescence, high-energy synchrotron X-ray diffraction, and (scanning) transmission electron microscopy using both electron energy loss and energy dispersive X-ray spectroscopy. As CdSe particles coarsen, their heat of formation becomes more exothermic. The interfacial energy of CdSe QDs embedded in a borosilicate glass, determined from the slope of enthalpy of drop solution versus calculated surface area, is 0.56 ± 0.01 J/m2.  相似文献   

13.
Lanthanum monoaluminate (LaAlO3) nanoparticles have been synthesized using microreactors made of poly(oxyethylene) nonylphenyl ether (Igepal CO-520)/water/cyclohexane microemulsions. The control of particle size was achieved by varying the water-to-surfactant molar ratio. The synthesized and calcined powders were characterized by thermogravimetry–differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Differential thermal analysis showed that LaAlO3 phase transformation decreases with increase in water/surfactant (R) value. Pure LaAlO3 phase was synthesized by annealing at 800 °C for 2 h in air directly from amorphous precursors, without formation of intermediate phase. The average particle size was found to increase with increase in water-to-surfactant ratio (R). FTIR analysis was carried to monitor the elimination of residual oil and surfactant phases from the microemulsion-derived precursor and calcined powder.  相似文献   

14.
Polycrystalline Bi2Te3 nanowires were prepared by a hydrothermal method that involved inducing the nucleation of Bi atoms reduced from BiCl3 on the surface of Te nanowires, which served as sacrificial templates. A Bi–Te alloy is formed by the interdiffusion of Bi and Te atoms at the boundary between the two metals. The Bi2Te3 nanowires synthesized in this study had a length of 3–5 μm, which is the same length as that of the Te nanowires, and a diameter of 300–500 nm, which is greater than that of the Te nanowires. The experimental results indicated that volume expansion of the Bi2Te3 nanowires was a result of the interdiffusion of Bi and Te atoms when Bi was alloyed on the surface of the Te nanowires. The morphologies of Bi2Te3 are strongly dependent on the reaction conditions such as the temperature and the type and concentration of the reducing agent. The morphologies, crystalline structure and physical properties of the product were analyzed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS).  相似文献   

15.
The effect of plasma and chemical methods on the stabilization of Polyacrylonitrile (PAN) nanofiber prepared by electrospinning technique, has been investigated at various oxygen contents (10%, 20%, and 30%) and KMnO4 solutions (3% and 5%). Fourier transform infrared (FT-IR) analysis of plasma and chemical oxidized samples indicated that the treated nanofibers were oxidized under different contents of oxygen plasma and KMnO4 contents by increasing the peak intensities of C&dbnd;O stretching band and OH– stretching vibration mode, respectively. Additionally conversion of C≡N bands into C&dbnd;N ones in the copolymer chain was observed in both plasma and chemical methods, but changes in chemical stabilized samples were not very sensible. Field emission scanning electron microscopy (FE-SEM) images revealed that the surfaces of the plasma treated nanofibers were extremely etched. Furthermore a higher reduction in the average oxidized nanofiber diameters was observed using plasma method.  相似文献   

16.
One of the major obstacles to the synthesis of nanoparticles and nanocatalyst is the stability of particles. In the present study, polymer stabilized ruthenium nanoparticles were synthesized by solvothermal method using solutions of ruthenium chloride in ethylene glycol in presence of poly(N ‐vinyl‐2‐pyrrolidone) (PVP) as a stabilizing agent. Stability of nanoparticles was studied by varying different parameters e.g. PVP/RuCl3 molar raio, RuCl3 concentration, reaction temperature and time and expressed in terms of particle size and size distribution. Transmission electron microscope (TEM) analysis revealed the presence of metallic clusters with a uniform size of about 20‐65 nm. Dispersion destabilisation of colloidal nanoparticles was detected by Turbiscan. Polymer stabilized ruthenium nanoparticles were dispersed on γ‐alumina to prepare uniformly disperse Ru/γ‐Al2O3 catalyst by mechanical strirring and sonication. Inductively coupled plasma‐optical emission spectroscopy (ICP‐OES), X‐Ray powder diffraction (XRD), Transmission electron microscopy (TEM) and Thermo gravimetric analysis (TGA) were used to characterize the supported catalyst. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A simple sonochemical route for the synthesis of Ag nanoparticles on ZnO nanorods is reported. Ultrasonic irradiation of a mixture of ZnO nanorods, Ag(NH3)2+, and formaldehyde in an aqueous medium yields ZnO nanorod/Ag nanoparticle composites. The powder X‐ray diffraction of the ZnO/Ag composites shows additional diffraction peaks corresponding to the face‐center‐cubic structured Ag crystalline, apart from the signals from the ZnO nanorods. Scanning electron microscopy and transmission electron microscopy images of the ZnO/Ag composites reveal that the ZnO nanorods are coated with Ag nanoparticles with a mean size of several tens nanometer. The absorption band of ZnO/Ag composites is distinctly broadened and red‐shifted, indicating the strong interfacial interaction between ZnO nanorods and Ag nanoparticles. This sonochemical method is simple, mild and readily scaled up, affording a simple way for synthesis of other composites. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Uniform Co3O4 nanorods were prepared by a micelle-assisted hydrothermal method. The samples were characterized by scanning electron microscopy (SEM), energy disperse spectra (EDS), transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), and N2 adsorption. The chemoluminescence and catalytic oxidation properties of CO and CH4 over Co3O4 nanorods were investigated. The results showed that the micelles played a key role in the formation of uniform nanorods, that the nanorods with a high crystallinity were obtained after being treated hydrothermally, and that the nanorods showed a higher chemoluminescence (CL) intensity of CO oxidation and a higher activity for CH4 combustion than the bulk one. The adopted ‘one-pot’ synthesis is a facile method, since no further annealing at high temperatures is needed.  相似文献   

19.
Pure and 1, 2, and 3 wt% Ag doped TiO2 nanofibers were prepared by electrospinning method at different applied voltages and heights at a constant flow rate of 2 mL/h. Characterization of the prepared samples was performed by x‐ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microcopy (AFM),four point probe method (FPPM), the differential scanning calorimetry/the thermal gravimetric analysis (DSC/TGA), ultraviolet/visible spectrometry (UV/VIS), and energy dispersive X‐ray spectrometer (EDX). It was found that the thermally untreated pure TiO2 nanofibers and thermally treated (at 500 °C) samples have the crystalline phase of anatase (A), and mixed anatase and rutile (A+R) phases, respectively. It was also observed that the content of the silver does not affect the crystal structure, but plays strengthening role in the rutile structure. SEM micrographs showed that all fabricated nanofiber samples have uniform morphologies, and AFM measurements indicated that the nanofibers were formed in three‐dimensional coils. The band gap values of the nanofiber samples obtained from UV/VIS measurements revealed that band gap values of the nanofiber samples decrease while the diameter of the nanofiber increases.  相似文献   

20.
以钛酸丁酯、聚乙烯吡咯烷酮(PVP)、无水乙醇为原料,利用静电纺丝技术制备出Ti(OC4H9)4/PVP纳米纤维,经500~1000℃高温煅烧制得TiO2纳米纤维,再通过水热法将AgBr纳米颗粒负载到TiO2纳米纤维表面.利用X射线衍射仪、场发射扫描电镜、差热-热重分析对AgBr/TiO2纳米纤维进行表征分析.利用甲基...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号