首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the resonant two-photon ionization and mass-analyzed threshold ionization (MATI) spectra of m-methoxyaniline and o-methoxyaniline. The vibronic features of m-methoxyaniline are built on 34308 ± 2 and 34495 ± 2 cm−1 corresponding to the origins of the S1 ← S0 electronic transition (E1’s) of the cis and trans rotamers. Analysis of the MATI spectra gives the adiabatic ionization energies (IEs) of 59983 ± 5 and 60879 ± 5 cm−1 for these two species. o-Methoxyaniline is found to have only one stable structure whose E1 and IE are 33875 ± 2 and 58678 ± 5 cm−1, respectively. Most of the active vibrations of m- and o-methoxyaniline in the electronically excited S1 and cationic ground D0 states result from the in-plane ring vibrations. Comparing these data with those of p-methoxyaniline allows us to learn about the vicinal substitution effects resulting from the relative locations of the NH2 and OCH3 substituents.  相似文献   

2.
We applied the two-color resonant two-photon mass-analyzed threshold ionization technique to record the vibrationally resolved cation spectra of 3,4-difluoroaniline (34DFA) via the 00, X1, 6b1, and I2 levels of the S1 state. The adiabatic ionization energy of this molecule was determined to be 64 195 ± 5 cm−1. Most of the observed active modes of the 34DFA cation in the D0 state are related to the in-plane ring deformation vibrations. Comparing these data with those of 3-fluoroaniline and 4-fluoroaniline, one can learn the effects of fluorine substitution on the electronic transition and molecular vibration.  相似文献   

3.
The geometric structures and vibrations of p-chloroanisole isotopomers in the first electronically excited state were studied by mass-analyzed resonance-enhanced two-photon ionization spectroscopy and by theoretical calculations. The band origins of the S1 ← S0 electronic transitions of 35Cl and 37Cl isotopomers were found to be equivalent at 34 859 ± 3 cm−1. Assignments of the observed vibrational bands of the two isotopomers were made mainly based on the CIS/cc-PVDZ calculations and on conformity with the available data in the literature. Although the general spectral features of these two isotopomers are similar, the frequencies of some vibrational modes are different. This frequency shift partially depends on the degree of involvement of the chlorine atom in the molecular vibrations.  相似文献   

4.
The infrared absorption spectrum of the ν12 fundamental band of ethylene-d (C2H3D) has been recorded with an unapodized resolution of 0.004 cm−1 in the wavenumber range of 1340-1460 cm−1 using the Fourier transform technique. By assigning and fitting a total of 870 infrared transitions using a Watson’s A-reduced Hamiltonian in the Ir representation, three rotational and five quartic centrifugal distortion constants for the upper state (v12 = 1) were determined for the first time. The rms deviation of the fit was 0.00044 cm−1 which is close to the experimental precision of the absorption lines. The A-type ν12 band centred at 1400.762811 ± 0.000041 cm−1was found to be relatively free from local frequency perturbations. The inertial defect Δ12 was found to be 0.20928 ±  0.00002 μÅ2.  相似文献   

5.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

6.
High-resolution Fourier transform spectrum of phosphine (PH3) at room temperature has been recorded in the region of the 3ν2 band (2730-3100 cm−1) at an apodized resolution of 0.005 cm−1. About 200 vibration-rotation transitions have been least squares fitted with an rms of 0.00039 cm−1 after taking into account the ΔK = ±3 interaction.  相似文献   

7.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

8.
The absorption spectrum of the ν6 band of C2H3D centered near 1125.27674 cm−1 in the 1100-1250 cm−1 region was recorded with an unapodized resolution of 0.0063 cm−1 using a Fourier transform infrared (FTIR) spectrometer. A total of 947 infrared transitions of the A-B hybrid-type band were assigned and fitted to upper-state (ν6 = 1) rovibrational constants using a Watson’s A-reduced Hamiltonian in the Ir representation up to eighth-order centrifugal distortion terms. The b-type infrared transitions of the band were analyzed for the first time. The root-mean-square deviation of the fit was 0.00062 cm−1. The ground-state rovibrational constants up to eighth-order terms were also obtained by a fit of 617 combination differences from the present infrared measurements, simultaneously with 21 microwave frequencies with a root-mean-square deviation of 0.00055 cm−1. From this work, the upper-state (ν6 = 1) and ground-state constants of C2H3D were derived with the highest accuracy, so far. The a- and b-type transitions of the hybrid ν6 band were found to be relatively free from local frequency perturbations. The ratio of the a- to b-type vibrational dipole transition moments (μa/μb) was found to be 1.05 ± 0.10. From the ν6 = 1 rovibrational constants obtained, the inertial defect Δ6 was calculated to be 0.3570 ± 0.0008 μÅ2.  相似文献   

9.
Atomic H and Cl were monitored by time-resolved resonance spectroscopy in the vacuum ultraviolet, following 193 nm laser flash photolysis of C6H5Cl and mixtures with NH3, over 300-1020 K and with Ar bath gas pressures from 30 to 440 mbar. Below 550 K simple exponential decays of [H] were observed, and attributed to addition to form chlorocyclohexadienyl radicals. This addition was reversible over 550-630 K and the equilibrium constant was determined by a third law approach. The addition rate constant can be summarized as (1.51 ± 0.11) × 10−11exp((−1397 ± 29)/T) cm3 molecule−1 s−1 (300-630 K, 1σ uncertainties), and the C-H bond dissociation enthalpy in 1-chlorocyclohexadienyl was determined to be 108.1 ± 3.3 kJ mol−1 at 298 K. At higher temperatures the photolysis of chlorobenzene yielded H atoms, which is attributed to the reaction of phenyl with chlorobenzene with a rate constant of (4.5 ± 1.8) × 10−10exp((−4694 ± 355)/T) cm3  molecule−1 s−1 over 810-1020 K. These and other reaction pathways are discussed in terms of information about the potential energy surface obtained via B3LYP/6-311G(2d,d,p) density functional theory.  相似文献   

10.
We report experimental data on the highly excited states of zinc in the energy range 74,625-75,740 cm−1 using two-step laser excitation scheme in conjunction with a thermionic diode ion detector. The 4s4p 3P1 inter-combination level at 32501.399 cm−1 was populated using a frequency doubled dye laser. The 4s5s 3S1 level at 53672.28 cm−1 gets populated from the ASE (amplified spontaneous emission) of the second step dye laser. The Rydberg series 4snp 3P2 (12 ? n ? 60), 4snp 1P1 (16 ? n ? 30) and parity forbidden transitions 4sns 3S1 (19 ? n ? 44) have been observed. A two parameter fit to excitation energies of the observed series yields the binding energy of the 4s5s 3S1 level as 22097.03 ± 0.03 cm−1 and consequently, the first ionization potential of zinc is determined as 75769.31 ± 0.05 cm−1, that is in excellent agreement with the earlier work.  相似文献   

11.
Rotationally selected infrared spectra of jet-cooled CH3OD have been recorded and analyzed in the OD-stretch region (2710-2736 cm−1). The observed spectra are obtained by monitoring three E-species microwave transitions (1−1 ← 10 at 18.957 GHz, 2−1 ← 20 at 18.991 GHz, and 3−1 ← 30 at 19.005 GHz) in a narrowband cavity Fourier transform microwave spectrometer, using the background-free coherence-converted population transfer technique. Of the four upper state subbands observed, two (K′ = 0 and −2) are split by perturbations. The E-species deperturbed band origin is at 2718.1 cm−1. The deperturbed reduced term values follow a pattern similar to the ground state. This allows the J′ = 0 torsional tunneling splitting to be estimated as 2.1 cm−1, which can be compared to 2.6 cm−1 in the ground state.  相似文献   

12.
High resolution Fourier transform spectra of the HDS molecule were recorded and analyzed for the first time in the region of the bands ν1 + 2ν2 (3938.6 cm−1), ν1 + ν3 (4522.6 cm−1), 2ν2 + ν3 (4638.8 cm−1), 2ν1 + ν2 (4767.7 cm−1), ν1 + ν2 + ν3 (5525.2 cm−1), 3ν1 (5560.6 cm−1), ν1 + 2ν3 (7047.2 cm−1), and 2ν2 + 2ν3 (7123.9 cm−1). The ro-vibrational energies of the upper vibrational states of these bands together with the ro-vibrational energies of 12 other bands already studied at high resolution were used as inputs in a Global Fit analysis firstly described in [O.N. Ulenikov, G.A. Onopenko, H. Lin, J.-H. Zhang, Z.-Y. Zhou, Q.-S. Zhu, R.N. Tolchenov, J. Mol. Spectrosc. 189 (1998) 29-39]. In this case, the resonance interactions between the states (v1v2v3) and (v1 ± 2 v2 ? 1 v3 ? 1) were taken into account. The resulting set of 143 parameters reproduces all the experimental data (2984 vibration-rotation energies of 20 vibrational states which correspond to about 9700 ro-vibrational transitions with Jmax = 23) with accuracies comparable with the experimental uncertainties.  相似文献   

13.
The Fourier transform infrared absorption spectrum of the ν12 fundamental band of ethylene-d (C2H3D) was recorded at an unapodized resolution of 0.0063 cm−1 in the 1330-1475 cm−1 region. Upper state (ν12 = 1) rovibrational constants inclusive of three rotational, five quartic, and four sextic centrifugal distortion constants were improved by assigning and fitting 1444 infrared transitions using Watson’s A-reduced Hamiltonian in the Ir representation. The present analysis yielded more higher-order upper state constants than previously reported. The rms deviation of the fit is 0.00055 cm−1. Improved ground state rovibrational constants were also determined from the combined fit of 2026 ground state combination differences (GSCD) from the assigned infrared transitions of the ν12, ν3 and ν6 bands and 21 microwave frequencies of C2H3D. The rms deviation of the GSCD fit is 0.00047 cm−1. The A-type ν12 band is centered at 1400.76262 ± 0.00004 cm−1. Local frequency perturbations were not detected in the analysis. The calculated inertial defect Δ12 is 0.20809 ± 0.00003 μÅ2.  相似文献   

14.
The main aim of the work is to transfer the high accuracy of the CO2 laser bands around 10 μm to far infrared regions around 400 and 250 cm−1 for secondary standards. The bands ν1 + ν2 and 3ν2 of CS2 were measured on the Bruker IFS 120 HR Fourier spectrometer in Oulu with special care and calibrated against CO2. In the second stage the ν2 region around 400 cm−1 was measured at a resolution of 0.001 cm−1. This spectrum was calibrated against 3ν2 internally with the CS2 band system using ladders formed with rotational lines in the bands ν2, 2ν2 − ν2 and 3ν2 − 2ν2. Further, the difference band ν1 − ν2 at 263 cm−1 together with accompanying hot bands was measured on a similar spectrometer in Lund, Sweden, but with a synchrotron radiation source. Using corresponding chains of lines as above this region was calibrated with ν1 + ν2. In this way, problems with conventional calibration could be avoided. Without the effect of the pressure shifts the absolute accuracy of 2.0 × 10−6 and 8.4 × 10−6 cm−1 has been achieved at 400 and 250 cm−1, respectively. Simultaneously the same calibration accuracy is also transferred to residual water lines around the CS2 far infrared bands and the best H2O lines will be given with literature comparisons. In addition to the calibration new results from the observed hot bands of CS2 in the region of the bands ν1 + ν2 and 3ν2 will be given.  相似文献   

15.
The emission spectra of CaH and CaD have been recorded at high resolution using a Fourier transform spectrometer and bands belonging to the E2Π-X2Σ+ transition have been measured in the 20 100-20 700 cm−1 region. A rotational analysis of 0-0 and 1-1 bands of both the isotopologues has been carried out. The present measurements have been combined with the previously available pure rotation and vibration-rotation data to provide improved spectroscopic constants for the E2Π state. The constants ΔG(½) = 1199.8867(34) cm−1, Be = 4.345032(49) cm−1, αe = 0.122115(92) cm−1, re = 1.986633(11) Å for CaH, and ΔG(½)=868.7438(46) cm−1, Be = 2.212496(51) cm−1, αe = 0.036509(97) cm−1, re = 1.993396(23) Å for CaD have been determined.  相似文献   

16.
The temperature dependence of the Cd line absorption profile at 326.1 nm perturbed by Kr has been carefully studied over a spectral range extending from 800 cm−1 in the blue wing to 1200 cm−1 in the red wing using a high-resolution double-beam spectrometer. The atomic densities of krypton (NKr) and cadmium (NCd) were (2.015±0.07)×1019 and (3.62±0.05)×1018 cm−3, respectively. The temperature dependence of the studied line profile was analyzed in the framework of the quasi-static theory. The van der Waals coefficient differences between the ground 10+ state and the two excited states 30+ and 31 (ΔC60 and ΔC61) were obtained from the near red wing profile using Kuhn's law. The values of ΔC60 and ΔC61 are found to be equal to 37.8±2 and 58.5±3 eV Å6, respectively. The ground (X 10+), and the excited (31, 30+) state potentials at the internuclear separations from 3.2 to 6.3 Å were determined. The well depths with their positions for these states are respectively equal to 134±7 cm−1, 3.95±0.2 Å; 72.3±4 cm−1, 4.95±0.3 Å; and 471±12 cm−1, 3.6 Å. The obtained well depths with their allowable errors are in good agreement with the values obtained before for the Cd-Kr system from some theoretical results and molecular beams experiments.  相似文献   

17.
The Fourier transform infrared (FTIR) spectrum of the ν12 fundamental band of ethylene-1-13C (or 13C12CH4) was recorded with an unapodized resolution of 0.0063 cm−1 in the wavenumber region of 1360-1520 cm−1. Rovibrational constants for the upper state (ν12 = 1) up to five quartic and two sextic centrifugal distortion terms were derived for the first time by assigning and fitting a total of 879 infrared transitions using a Watson’s A-reduced Hamiltonian in the Ir representation. The root-mean-square deviation of the fit was 0.00066 cm−1. The ground state rovibrational constants were also determined by a fit of 523 combination-differences from the present infrared measurements, with a rms deviation of 0.00090 cm−1. The A-type ν12 band which is centred at 1439.34607 ± 0.00004 cm−1 was found to be relatively free from local frequency perturbations. From the ν12 = 1 rovibrational constants obtained, the inertial defect Δ12 was found to be 0.242826 ± 0.000002 μÅ2.  相似文献   

18.
High level ab initio and DFT calculations have been carried out for silacyclopent-2-ene and its 1,1-d2, 1,1-difluoro, and 1,1-dichloro derivatives. The previously published far-infrared spectra of the ring-puckering vibration, which had been interpreted to be characteristic of a rigid planar molecule, have been reanalyzed for the hydride and 1,1-d2 derivative. Both the spectra and the theoretical calculations show the molecule to have a small barrier to planarity. The experimental data analyzed with a Gaussian barrier produce a barrier of 49 cm−1 as compared to a value of 47 cm−1 computed using the CCSD/6-311++G(d,p) basis set. The experimental value for the deuteride was determined to be 41 cm−1 from the one-dimensional approximation. All MP2 and DFT computations for the 1,1-difluoro derivative predict a planar structure whereas the MP2 computation when used with triple-ζ basis set predicts a barrier of 13 cm−1 for the chloride. Vibrational frequencies were also computed for these molecules and compared to experimental results for the characteristic frequencies for these types of molecules.  相似文献   

19.
Fourier-transform far-infrared spectra of CH318OH in the 15-470 cm−1 region have been analyzed by means of the Ritz assignment program. The far-infrared data have been combined with the literature microwave and millimeter-wave measurements in a full global fitting of the first three torsional states (νt = 0, 1, and 2) of the CH318OH ground vibrational state. The fitted dataset includes 550 microwave and millimeter-wave lines and more than 17 000 Fourier-transform transitions covering the quantum number ranges J ? 30, K ? 15, and νt ? 2. With incorporation of 79 adjustable parameters, the global fit achieved convergence with an overall weighted standard deviation of 1.072, essentially to within the assigned measurement uncertainties of ±50 kHz for almost all of the microwave and millimeter-wave lines and ±6 MHz (0.0002 cm−1) to ±15 MHz (0.0005 cm−1) for the Fourier-transform far-infrared measurements. Based on the global fit results, a database has been compiled containing transition frequencies, quantum numbers, lower state energies and transition strengths. This database will provide support for present and future astronomical studies, such as the on-going Orion surveys in preparation for the launch of the Herschel Space Observatory, in identifying isotopic methanol contributions to interstellar spectra.  相似文献   

20.
A recently constructed long-path enclosive flow cooling apparatus is employed to obtain the Fourier transform gas-phase infrared absorption spectrum of natural isotopic trans-1,2-dichloroethylene with a resolution of 0.00190 cm−1 in the 800-1000 cm−1 spectral region. The rotational structure of the out-of-plane CH flapping fundamental has been analyzed for the isotopic analogues 35Cl2 and 35Cl37Cl using the Watson A-reduced Hamiltonian model and Ir-representation. A ground-state combination difference analysis for the 35Cl37Cl isotopomer based on 1402 assigned transitions belonging to the ν6 band yields a band origin of 897.94493(10) cm−1 and values for the ground-state rotational constants: A0 = 1.7466454(44) cm−1, B0 = 0.05019643(82) cm−1 and C0 = 0.04877977(82) cm−1 together with quartic centrifugal distortion constants. The red-shift of 0.00444(10) cm−1 observed for the ν6 band origin of 35Cl37Cl relative to the 35Cl2 band origin is now consistent with the Rayleigh rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号