首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J.Q. Wang 《Journal of Non》2011,357(1):220-222
By statistically analyzing 48 kinds of metallic glasses, we report clear correlations between the dimensionless ratio of glass transition temperature/Debye temperature (TgD) and density (ρ), and between Young's modulus or shear modulus and Tg, for the glasses consisting of only metal elements, while the metallic glasses alloyed with metalloid elements exhibit distinct deviation from the correlations. It is suggested that the alloying of metalloid elements would show covalent-like bonding characteristics in metallic glass, and the found correlations can be used to distinguish different bonding characteristics in metallic glasses.  相似文献   

2.
《Journal of Non》2007,353(32-40):3327-3331
The thermal behavior of the short-range order of Pd40Cu30Ni10P20 bulk metallic glasses has been investigated in situ by means of high-temperature X-ray synchrotron diffraction. The dependence of the X-ray structure factor S(q) of the glassy state on temperature follows the Debye theory up to the glass transition. Above the glass transition temperature Tg, the temperature dependence of S(q) is altered toward a continuous development of structural changes in the liquid state with temperature. The behavior of the structure factor during heating and cooling through the glass transition gives experimental evidence for melting the glass, and for freezing the liquid, respectively at the caloric glass temperature.  相似文献   

3.
H.S. Chen 《Journal of Non》1978,29(2):223-229
The temperature dependence of viscosities near the glass transition is measured from the rates of thermal transformation for metallic glasses PtNiP, PdNiP, NiPBA1 and (Fe, Co)PBA1. Alloying among metallic elements which lowers the glass transition temperature Tg lowers the ideal glass transition temperature T0, but raises the residual configurational entropy Sg and the activation energies for “diffusive” rearrangement, Δμ1, of the alloying glasses, while compositional ordering associated with the addition of metalloids raises the Tg and T0 and lowers the Sg and Δμ1. Results are correlated to the atomic ordering and stability of the glasses. The extracted free volume and the critical diffusive volume are much smaller, by a factor of 4, for metallic glasses than for many other glasses.  相似文献   

4.
A surface softening effect induced during copper-mould suction casting of bulk metallic glass is investigated as a function of rod diameter and glass fragility index, m, by nanoindentation. A reduction in hardness and reduced modulus at the rod surface is found to be favoured in small diameter castings and in fragile systems, respectively resulting from limited in-situ annealing and from a greater diversity of metastable atomic environments in the potential energy landscape of fragile glasses. Enhanced propensity for shear transformation zone nucleation in the low moduli surface is explained in terms of reduced atomic connectivity arising from a reduction in local co-ordination number and a lowering of the shear modulus. Finally, the structure and mechanical diversity that is possible in as-cast bulk metallic glass rods is explored through a relative quantification of shear modulus and plastic zone size across the whole as-cast state and in a single rod. These findings illustrate the sensitivity of bulk metallic glass to preparation, especially in respect of thermal history, potentially making replication of mechanical data between researchers problematic.  相似文献   

5.
The mechanical response of different glasses to a Vickers indentor has been investigated between room temperature and Tg+50 °C. The permanent deformation, from which hardness is estimated, as well as the brittle fracture characteristics, allowing for an evaluation of the fracture toughness, were measured and analysed. Comparison between a standard float glass and advanced glasses such as chalcogenide (with mainly covalent bonding) and metallic glasses was made to get a more general insight into high temperature indentation behaviour. As temperature increases, the glass response becomes more and more time-dependent, and in the vicinity of Tg the permanent deformation was observed to increase rapidly for all glasses. Further, while the standard float glass showed an enhanced apparent toughness at elevated temperatures due to a brittle to ductile transition, almost no change in apparent toughness was revealed in the GeAsSe glass emphasizing the time-dependent response of glass at elevated temperature.  相似文献   

6.
S. Li  R.J. Wang  M.X. Pan  D.Q. Zhao  W.H. Wang 《Journal of Non》2008,354(10-11):1080-1088
We report that a series of ternary RE55Al25Co20 (RE = Y, Ce, La, Pr, Nd, Gd, Tb, Dy, Ho and Er) alloys can be readily cast into bulk glasses by a conventional casting method. The characteristics and properties of these new bulk metallic glasses (BMGs) are studied and compared. Due to the chemical comparability and well-regulated variety in atomic size, properties and elastic constants of these rare earth elements, the RE55Al25Co20 BMGs could be regarded as a model system to investigate the glass-forming ability, thermal stability, glass transition, crystallization behavior, liquid fragility, elastic and mechanical properties as well as their relationships. An attempt is made to highlight commonality and contrasts of the effects of various factors on the metallic glasses formation and properties.  相似文献   

7.
The existence of a growing correlation length associated with the strong increase of relaxation times of glass-formers close to the glass transition is still a major open question in glass physics. It has been recently proposed that the ac nonlinear susceptibility of a supercooled liquid close to the glass transition temperature Tg would be a probe of dynamical correlations. As for spin glasses, where the nonlinear susceptibility diverges at the transition, this quantity is tailored to reveal the possible “hidden” critical behavior of the glass transition. We have developed a high sensitivity experimental device to measure the nonlinear dielectric susceptibility of an insulating material at finite frequency. It measures the third harmonics of the current flowing out of a capacitor with the supercooled liquid as the dielectric layer. It is based on a bridge with two capacitors, and reaches a sensitivity better than 10− 7 (ratio of third to first harmonics). Our first results on supercooled glycerol are presented. They clearly reveal the growing of the correlations close to the glass transition.  相似文献   

8.
G.J. Fan  H. Choo  P.K. Liaw 《Journal of Non》2007,353(1):102-107
Based on theoretical calculations using the fragility concept and the nucleation theory for a model glass-forming system, we propose a dimensionless criterion, ?, expressed by TrgTx/Tg)a, with Trg, the reduced glass-transition temperature, ΔTx, the width of the supercooled liquid region when heating a glass, Tg, the glass transition temperature, and a, the exponent. The application of this simple criterion to various glasses, including network, metallic, and molecular glasses (except pure water), indicates an excellent correlation between the critical cooling rate Rc and ? in a Log Rc-? single master plot with a = 0.143.  相似文献   

9.
《Journal of Non》2007,353(32-40):3177-3181
The atomic dynamics in two (bulk) metallic glasses, Ni40Pd40P20 and Zr55Cu30Al10Ni5, were investigated by neutron inelastic scattering in different regions of the potential energy landscape, which are reached by slow cooling the bulk glasses and by hyper-quenching the same alloys. The results prove that the atomic dynamics depends also on the fictive temperature, i.e. the region of the potential energy surface, in which the glass is frozen in. Obviously the shapes of the basins or inherent structures are not the same everywhere on the potential energy surface, and the glass with a higher fictive temperature has more low energy modes than has the same glass with a lower fictive temperature. As results from computer simulation have suggested already, on moving to regions of lower mean potential energy (aging), part of theses low energy modes are transferred to the energy region of the calculated Debye cut-off energy. The difference between the vibrational entropies, calculated from the generalized vibrational density-of-states, which have been determined for both fictive temperatures, shows that the contribution from the vibrational entropy to the total entropy change, when moving through the potential energy landscape, is small for the two metallic glasses investigated. Structural relaxation of the hyper-quenched glass removes part of the additional low energy modes, but quantitatively possibly only at the low and perhaps also at the high-energy limit of the density-of-states. The wavelength dependence of the dynamics suggests that the additional low energy modes in the glass with the higher fictive temperature are not dominated by extended but more likely by localized modes.  相似文献   

10.
Nanophase separation in the bulk Ge–As–Se chalcogenide glasses was observed by SEM and supported by XRD and IR measurements. Effects of nanophase separation on glass transition temperature (Tg), microhardness (Hv), optical band gap (Eopt) and thermal expansion coefficient (α) were investigated in terms of glass rigidity transitions. According to the correlations between the properties and average coordination number Z, it is established that nanophase separation becomes more intensive when Z is larger than 2.64.  相似文献   

11.
12.
P. Gadaud  S. Pautrot 《Journal of Non》2003,316(1):146-152
The determination of the elastic and anelastic characteristics by means of original non-destructive techniques has been applied to glasses and glass composites in order to link together the macroscopic data with structural aspects. The dynamical Young’s modulus determined by a free resonance technique allows a good accuracy measurement. Some examples concerning oxides, Ge(As)Se or metallic glasses are presented: the abrupt drop of the modulus in the range of the glass-transition temperature Tg is a general observation, which leads us to an attempt at normalization of the curves E versus T on master curves E/E(Tg) versus T/Tg. To study the viscoelastic properties, a low frequency torsional spectrometer is preferentially used to measure the damping due to viscous movements at a microscopic scale. A study of MgSiAlON glasses allows us to show that the intrinsic activation energy is much smaller than the one measured by creep or relaxation tests and that the glassy transition is characterized by a smooth change from vitreous solid (highly correlated) to quasi-liquid behavior; this has been confirmed on a metallic glass.  相似文献   

13.
《Journal of Non》2007,353(13-15):1264-1267
The crystallization kinetics of the bulk Se80−xTe20Bix chalcogenide glasses were studied by using differential scanning calorimetry with different heating rates (5,10,15 and 20 K/min) under non-isothermal conditions. The values of glass transition temperature, peak crystallization temperature and melting temperature are found to increase with increase in heating rate as well as with bismuth content. The activation energy for glass transition and that for crystallization have been determined using the Kissinger equation and Matusita equation. The thermal stability and glass-forming tendency have also been studied.  相似文献   

14.
The effect of hydration on the kinetic fragility of soda-lime-silica glasses was investigated by viscometry in the glass transition range. Water-bearing glasses were prepared from industrial float glass (FG) and a ternary model glass (NCS = 16Na2O 10CaO 74SiO2 in mol%) by bubbling steam through the melt at 1480 °C and up to 7 bar. Additionally, a sodium borosilicate glass (NBS = 16Na2O 10B2O3 74SiO2 in mol%) was hydrated under equal conditions. As detected by infrared spectroscopy water dissolves in the glasses exclusively as OH-groups. The hydration resulted in a total water content CW up to ≈ 0.2 wt% for FG, NCS and NBS glasses. Kinetic fragility, expressed by the steepness index m, was determined from the temperature dependence of η at the glass transition. Viscosity data from previous studies on hydrous float glasses (CW > 1 wt%) were surveyed together with literature data on the (H2O)–Na2O–CaO–SiO2, (H2O)–Na2O–SiO2 and (H2O)–SiO2 systems to expand the range of water concentration and bulk composition. We could demonstrate that m decreases for all glasses although water is dissolved as OH and should depolymerize the network. An empirical equation of the general type m = a ? b logCW where a, b are fitting parameters, enables m to be predicted, for each glass series as function of the water content CW. The enlarged data base shows that the parameter B of the Arrhenius viscosity-temperature relation decreases much stronger than the isokom temperature at the glass transition.  相似文献   

15.
Refractory bulk metallic glasses and bulk metallic glass composites are formed in quaternary Ni-Nb-Ta-Sn alloy system. Alloys of composition Ni60(Nb100−xTax)34Sn6 (x = 20, 40, 60, 80) alloys were prepared by injection-casting the molten alloys into copper molds. Glassy alloys are formed in the thickness of half mm strips. With thicker strips (e.g., 1 mm), Nb2O5 and Ni3Sn phases and the amorphous phase form an in situ composite. Glass transition temperatures, crystallization temperatures, and ΔTx, defined as Tx1 − Tg (Tx1: first crystallization temperature, Tg: glass transition temperature) of the alloys increase dramatically with increasing Ta contents. These refractory bulk amorphous alloys exhibit high Young’s modulus (155-170 GPa), shear modulus (56-63 GPa), and estimated yield strength (3-3.6 GPa).  相似文献   

16.
J.Q. Wang  H.Y. Bai 《Journal of Non》2011,357(1):223-226
We report that both shear and bulk moduli, not only shear modulus, are critical parameters involved in both homogeneous and inhomogeneous flows in metallic glass. The flow activation energy (?F) of various glasses when scaled with average molar volume Vm, which is defined as flow activation energy density ρE = ?F/Vm, can be expressed as: . The extended elastic model is suggestive for understanding the glass transition and deformation in metallic glasses.  相似文献   

17.
J.D. Plummer  I. Todd 《Journal of Non》2009,355(6):335-819
The relationships between the elastic moduli, glass forming ability and response to deformation of bulk metallic glasses are investigated. Five bulk metallic glasses are prepared from high purity elements via suction casting. The results confirm that there exists a correlation between energy absorbed to failure during compression testing and the bulk to shear modulus ratio. This finding is developed such that it corresponds only to the elastic component of energy absorption, and that the bulk modulus dominates this. Plastic deformation appears to be favored by a reduced shear modulus, although it shows greater dependence on structural features that are frozen in during the glass transition, and so may well be dependent on the liquid fragility.  相似文献   

18.
The switching properties previous to the memory effects of bulk chalcogeni de semiconductor glasses in the Al-As-Te system are investigated. The values of the switching voltage are related to the glass transition temperatures as well as to glass composition and a linear relation between ln Vth and Te at% is found. A constant electrical power for switching occurrence has been found. The behaviour of the switching voltage Vth with temperatures ranging from room temperature to 100°C follows an exponential law previously reported by other authors. The delay time versus applied voltage shows a typical glass bulk behaviour. The experimental results support an electrothermal model for switching in this system for the used conditions, although a low-field dependence must be introduced for a complete agreement.  相似文献   

19.
The longitudinal and transverse sound velocities and Vickers hardness of metallic glasses (Pd1 ? xNix)0.80P0.20, (Pd1 ? xFex)0.80P0.20 and (Pt1 ? xNix)0.75P0.25 have been measured. The elastic constants at room temperature exhibit a positive deviation with composition χ from linearity whereas the hardness shows a negative deviation. The increase in elastic constants has been attributed to a denser packing of the alloys on mixing. The reduced hardness HrH/μ versus χ exhibits a remarkable similarity to a Tg versus χ relationship. This seems to indicate that flow mechanisms involved in metallic glasses above and below the glass-transition temperature are of similar origins. It is the excess entropy of disorder associated with alloying which lowers the hardness as well as the viscosity of metallic glasses. The metallic glasses possess in general a relatively high Poisson's ratio ν ≈ 0.40 and a shear modulus approaching that of the noble metals Cu, Ag and Au. Among the metallic glasses observed, the PtP glasses exhibit the highest ν = 0.42, whereas the glasses containing Fe tend to have lower values. The phenomenon that the conduction electrons in the glassy alloys behave as in the noble metals may be partly attributed to the filling of d shell orbitals of the transition metals in the PtP, PdP and NiP alloys. The high ν of metallic glasses is believed to be responsible for the ductile behavior of these glasses. Poisson's ratio ν of metallic glasses was observed to decrease with decreasing temperature. It is suggested that the decreasing ν with falling temperature causes the rapid increase in the fracture strength of Fe-based glasses.  相似文献   

20.
We have produced a series of bulk metallic glasses of composition (HfxZr1−x)52.5Cu17.9Ni14.6Al10Ti5 (with x=0-1) by an arc melting/suction casting method. The density of these alloys increases by nearly 67% with increasing Hf content from 6.65 g/cm3 (x=0) to 11.09 g/cm3 (x=1). Over the same composition range the glass-forming ability decreases, as demonstrated by the size of the largest amorphous ingots that can be cast without crystallization. Although both the glass transition temperature and the melting temperature increase linearly with increasing Hf content, the reduced glass transition temperature (Tg/Tm) decreases, from 0.64 (x=0) to 0.62 (x=1), which suggests that the `confusion principle' correlating increased glass-forming ability with increased number of components, does not apply in this case due to the chemical similarity between Zr and Hf. A different crystallization behavior is observed for Zr-based and Hf-based glasses. The final crystalline phases are CuZr2 and Zr2Ni for Zr-based alloys, and Al16Hf6Ni7 and CuHf2 for Hf-based alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号