首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enthalpies of fusion have been measured by differential scanning calorimetry for a Na2O-SiO2 system at 50, 66.6, and 74.4 mol% SiO2. Enthalpies of mixing of liquids obtained from different calorimetry techniques are critically evaluated. The data on calorimetric enthalpy, activity of Na2O, cristobalite liquidus, and immiscibility gap are used to determine the enthalpy and entropy of mixing of sodium-silicate liquids are determined as a function of composition by the least squares method. The derived mixing properties are based only on the experimental data and are independent of any assumption about the structure and chemical species in liquids. The enthalpy of mixing has a minimum value of −120 kJ/mol at 35-40 mol% SiO2 and is convex upward around 80-90 mol% SiO2. The entropy of mixing have a maximum value of + 6 J/K-mol at 75 mol% SiO2, and it decreases with the SiO2 content to −5 J/K-mol at 40 mol% SiO2. This decrease in entropy can be accounted for by ideal mixing of Q4, Q3, and Q0 + 1 + 2 (= Q0 + Q1 + Q2) species in the liquids and is responsible for the negative temperature dependence of the partial molar Gibbs energy of mixing of Na2O, observed in activity measurements. Comparison of the present results with previous values suggests that a quasi-chemical model and the Adam-Gibbs model overestimate the configurational entropy of mixing of liquids.  相似文献   

2.
B. Faure  G. Monnom 《Journal of Non》2007,353(29):2767-2773
The role of some glass network modifiers on the quantum efficiency of the near-infrared fluorescence from the 3H4 level of Tm3+ ion in silica-based doped fibers is studied. Modifications of the core composition affect the spectroscopic properties of Tm3+ ion. Adding 17.4 mol% of AlO3/2 to the core glass caused an increase of the 3H4 level lifetime up to 50 μs, 3.6 times higher than in pure silica glass. The quantum efficiency was increased from 2% to approximately 8%. On the opposite, 8 mol% of PO5/2 in the core glass made the lifetime decrease down to 9 μs. These changes of Tm3+ optical properties are assigned to the change of the local phonon energy to which they are submitted by modifiers located in the vicinity of the doping sites. Some qualitative predictions of the maximum achievable quantum efficiency are possible using a simple microscopic model to calculate the non-radiative de-excitation rates.  相似文献   

3.
E. Mansour 《Journal of Non》2011,357(5):1364-3380
Fourier transformation infrared spectra, density and DC electrical conductivity of 30Li2O · xCeO2⋅(70 − x)B2O3 glasses, where x ranged between 0 and 15 mol%, have been investigated. The results suggested that CeO2 plays the role of network modifier up to 7.5 mol%. At higher concentrations it plays a dual role; where most of ceria plays the role of network former. The density was observed to increase with increasing CeO2 content. The effect on density of the oxides in the glasses investigated is in the succession: B2O3 < Li2O < CeO2. Most of CeO2 content was found to be associated with B2O3 network to convert BO3 into B O4 units. The contribution of Li+ ions in the conduction process is much more than that due to small polarons. The conductivity of the glasses is mostly controlled by the Li+ ions concentration rather than the activation energy for CeO2 > 5 mol%. Lower than 5 mol% CeO2 the conductivity is controlled by both factors. The dependence of W on BO4 content supports the idea of ionic conduction in these glasses.  相似文献   

4.
Poly (N-vinyl pyrrolidone) (PVP) and ammonium thiocyanate (NH4SCN) based polymer films with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the polymer with the salt. The conductivity analysis shows that the 20 mol% ammonium thiocyanate doped polymer electrolyte has high ionic conductivity and it has been found to be 1.7 × 10−4 S cm−1, at room temperature. From the admittance plot, the activation energy has been found to be low for 20 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε), dissipation factor (tan δ) and electric modulus (M) of the samples.  相似文献   

5.
Incorporation of metal alkoxides (Ti, Zr, etc.) for tuning the optical properties of silica glasses by the sol-gel process is of significant interest for optical applications. In this paper, we report an anhydrous sol-gel process for preparation of photosensitive titania-doped hybrid glassy polymer with good homogeneity and high doping concentration (TiO2 up to 40 mol%). The process consists of two steps: in the first step methacryloxypropyltrimethoxysilane (MPS) is hydrolyzed by boric acid through ligand exchange reaction (OH↔OR) under anhydrous conditions; and in the second step dimethyldimethoxysilane (DMDMS), diphenyldimethoxysilane (DPhDMS) and titanium ethoxide (TET) were added to condense with the silanols formed in the first step. The optical properties of the synthesized hybrid polymer were studied, and results showed that the hybrid material has low OH absorption, low optical losses (0.45 dB/cm at 1550 nm and 0.16 dB/cm at 1310 nm respectively), and good thermo-optical linearity with tuneable refractive index. The effect of TiO2 doping in reducing the OH concentration of the hybrid material was observed, and the mechanism for this effect is discussed.  相似文献   

6.
The influence of Cr2O3 on glass forming characteristics and physical properties of PbO-Fe2O3-P2O5 glasses has been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction analysis (XRD), Differential Thermal Analysis (DTA), Scanning Electron Microscopy (SEM) and impedance spectroscopy. Glasses of the general composition xCr2O3-(28.3-x)PbO-28.7Fe2O3-43.0P2O5, 0 ≤ × ≤ 10, (mol%) were prepared by conventional melt-quenching technique. The compositions containing up to 4 mol% Cr2O3 formed fully amorphous samples and their Raman spectra show systematic increase in the fraction of orthophosphate Q0 units with increasing Cr2O3 content and O/P ratio.On the other hand, compositions containing 8 and 10 mol% Cr2O3 partially crystallized during cooling and annealing to Fe7(PO4)6, Fe2Pb3(PO4)4 and Cr2Pb3(PO4)4. A high tendency for crystallization of these melts is related to the high O/P (> 4) and Fe2+/Fetot (≈ 0.60) ratios.Electrical conductivity of xCr2O3-(28.3-x)PbO-28.7Fe2O3-43.0P2O5, 0 ≤ × ≤ 10, (mol%) compositions is independent of Cr2O3 and controlled entirely by the polaron transfer between Fe2+ and Fe3+ ions.  相似文献   

7.
S. Basu  H. Jain 《Journal of Non》2008,354(28):3278-3283
We have explored the development of multifunctionalities viz, optical nonlinearity, high dielectric constant and ferromagnetic behavior in a nanostructured silica based glass of 14.0Na2O, 26.0BaO, 26.0TiO2, 16.0B2O3, 17.0SiO2, 1.0NiO (mol%) composition. A heat treatment at 863 K for 4 h led to nonlinear refractive index and absorption coefficients at wavelength 800 nm of 0.11 × 10−19 m2/W and 1.15 × 10−3 cm/GW, respectively. A heat treatment at 1073 K for 2 h followed by 1113 K for 3 h increased the dielectric constant from 11 to 50, apparently due to the formation of nanocrystals of BaTiO3 within the glass medium. Glass samples reduced at 923 K for 1 h exhibited ferromagnetic behavior due to the presence of nickel nanoparticles.  相似文献   

8.
The effects of the substitution of fluoride ions for oxide ions on the thermal and optical properties of ternary ZnO-Bi2O3-P2O5 glass with low-P2O5 content (20-25 mol%) were investigated. Fluoride ions were introduced into the glass up to about 12 mol% as ZnF2. Raman spectra indicated that fluoride ions were substituted for oxide ions connected with bismuth ions. Deformation and glass transition temperatures decreased monotonically with fluorine concentration. The absorption edge shifted toward higher energies with increasing fluorine concentration by about 0.3 eV for 12 mol% ZnF2 substitution. The blue shift of the absorption edge is attributable to two effects. One was a blue shift of an absorption band which was observed as a peak at 4.7 eV in the reflection spectra and was attributed to the spin forbidden 6s-6p interband transition in Bi3+ ions. The blue shift originates from a change in electron-donating ability through anions as expected from electronegativity or optical basicity. Another is a disappearance of a shoulder at around 4.3 eV in the reflection spectra. The latter was the major reason for the large blue shift of the absorption edge energy, because the band relating to the 4.3 eV shoulder is close to the absorption edge.  相似文献   

9.
Population dynamics of the 3F4 and 3H4 levels in Tm3+ doped ZB(L)AN glasses was studied for Tm3+ concentrations from 0.5 to 12 mol%. Fluorescence waveforms from these levels were measured at 1.8 μm (3F4) and 800 nm (3H4) with both direct and indirect pumping. Decay from the 3F4 level was found to be exponential with non-radiative decay rates proportional to the square of the Tm concentration. This indicated a process of energy migration by diffusion within the excited Tm3+ ions followed by quenching at sites to which the ions could migrate. The decay of the directly pumped 3H4 level exhibited both exponential and non-exponential behavior depending on the concentration. For the lowest concentration (0.5 mol%) the decay was exponential, but at concentrations of 1, 2, 4 and 6 mol% the decay waveforms were distinctly non-exponential. The non-exponential waveforms could be fitted by the Yokota-Tanimoto model for diffusion of excited donors and dipole-dipole interactions with acceptors. This model produced values for CDD and CDA, the donor-donor and donor-acceptor energy transfer parameters, respectively. At the higher concentrations (8, 10, 12 mol%) the waveforms were exponential with decay rates from which the cross-relaxation parameter for the process 3H4, 3H6 → 3F4, 3F4 was obtained. When the 3F4 level is pumped at 1660 nm, the decay of the 3H4 level confirmed the influence of the up-conversion energy transfer process 3F4, 3F4 → 3H4, 3H6.  相似文献   

10.
Non-doped and lithium doped nickel oxide crystalline films have been prepared onto quartz and crystalline alumina substrates at high substrate temperature (600 °C) by the pneumatic spray pyrolysis process using nickel and lithium acetates as source materials. The structure of all the deposited films was the crystalline cubic phase related to NiO, although this crystalline structure was a little bit stressed for the films with higher lithium concentration. The grain size had values between 60 and 70 nm, almost independently of doping concentration. The non-doped and lithium doped films have an energy band gap of the order of 3.6 eV. Hot point probe results show that all deposited films have a p-type semiconductor behavior. From current–voltage measurements it was observed that the electrical resistivity decreases as the lithium concentration increases, indicating that the doping action of lithium is carried out. The electrical resistivity changed from 106 Ω cm for the non-doped films up to 102 Ω cm for the films prepared with the highest doping concentration.  相似文献   

11.
Sol-gel synthesis of erbium-doped yttrium silicate glass-ceramics   总被引:1,自引:0,他引:1  
Yttrium silicate glasses and glass-ceramics were prepared by the sol-gel process. Yttrium nitrate was added to tetraethyl orthosilicate in amounts representing between 0.2 and 20 mol%, as well as amounts corresponding to the disilicate composition. Some samples were doped with erbium acetate. The solutions underwent gellation in 2-7 days and were dried for 2 weeks. Differential thermal analysis was used to design a multi-step heat treatment to 1000 °C to densify samples to transparent or translucent monoliths. Above 1000 °C, samples crystallized to yttrium disilicate and cristobalite. Phase separation before crystallization influenced the formation of the crystal phases.  相似文献   

12.
Fluorescence waveforms from the (3P0 + 3P1) manifold in Pr3+ doped ZBAN glass at wavelengths of 520, 635 and 695 nm were measured for Pr3+ concentrations from 4 to 12 mol%. The waveforms were found to be non-exponential with decay rates rapidly increasing with Pr3+ concentration and independent of whether the 3P0 or the 3P1 level was excited. The multipolar energy transfer model was used to analyse the waveforms and this showed that concentration quenching was due to cross-relaxation by dipole-dipole interaction. The critical concentration, at which the cross-relaxation rate equals the intrinsic decay rate, was found to be of 2.06 × 1026 m−3 (1.20 mol%). There was no evidence of excitation diffusion for Pr3+ concentrations of up to 12 mol%.  相似文献   

13.
3.5 mol%, 6.5 mol%, 9.5 mol%, and 12.5 mol% BaF2 were gradually substituted for BaO in 0.3 mol% Tm2O3 doped 12.5 BaO-12.5 Ga2O3-75 GeO2 (BGG) glasses to study the effect of the substitution on the OH elimination and emission properties. The FTIR spectral demonstrated that the substitution effectively eliminated OH groups and 9.5 mol% BaF2 was enough for the OH elimination. The J-O parameters of all the samples were calculated according to J-O theory. The calculation showed that the Ω2 parameter decreased monotonically with BaF2 content increasing, while Ω4 and Ω6 did not change much. The radiative lifetime increased while BaF2 content increased as well. The emission cross section of 3F4 → 3H6 transition was calculated by the F-L formula. However, it decreased with the gradual BaF2 addition.

Research Highlights

? OH groups were eliminated by the substitution of BaF2 for BaO in (BGG) glass. ? The optimal substitution level of BaF2 was 9.5 mol% for OH elimination. ? The Ω2 parameter decreased monotonically by the elimination. ? The emission cross section of 3F4 → 3H6 transition was decreased by the substitution.  相似文献   

14.
This study was explored in series of the optical, thermal, and structure properties based on 60P2O5-10Al2O3-30ZnO (PAZ) glasses system that doped with varied rare-earth (RE) elements Yb2O3/Er2O3. The glass transition temperature, softening temperature and chemical durability were increased with RE-doping concentrations increasing, whereas thermal expansion coefficient was decreased. In the optical properties, the absorption and emission intensities also increase with RE-doping concentrations increasing, When Er2O3 and Yb2O3 concentrations are over than 3 mol% in the Er3+-doped PAZ system and Yb3+-doped concentration is over than 3 mol% for Er3+/Yb3+-codoped PAZ system, the emission intensity significantly decreases presumably due to concentration quenching, formation of the ions clustering, and OH groups in the glasses network. It is suggested that the maximum emission cross-section (σe) is 7.64 × 10− 21 cm2 at 1535 nm is observed for 3 mol% Er3+-doped PAZ glasses. Moreover, the maximum σe × full-width-at-half-maximum is 327.8 for 5 mol% Er3+-doped PAZ glasses.  相似文献   

15.
The non-Debye excess heat capacities of binary lithium borate glasses with different Li2O compositions of x = 8, 14 and 22 (mol%) are investigated to understand origin of the boson peak. The low-temperature heat capacities are measured between 2 and 50 K by a relaxation calorimeter. The experimental non-Debye heat capacities with x = 14 is successfully reproduced using the excess vibrational density of states measured by inelastic neutron scattering. This finding indicates that the non-Debye heat capacities of lithium borate glasses originate from the excess vibrational density of states measureable by inelastic neutron scattering. Moreover, it is demonstrated that all of the excess heat capacity spectra lie on a single master curve by the scaling using boson peak temperature and intensity.  相似文献   

16.
Glasses for medical applications are used in particulate form or as a cement component. This work was undertaken to determine structural changes in 0.48SiO2-0.36ZnO-0.12CaO-0.04SrO glass when the SiO2 is substituted with 5 mol% increments of TiO2. X-ray Diffraction (XRD) was used to determine the presence of crystallinity. This occurred after additions of 20 mol% TiO2. Differential Thermal Analysis (DTA) and Network connectivity (NC) calculations determined that by increasing the TiO2 content, the Tg and NC reduced (Tg 670 °C to 632 °C, NC 1.83 to −1.14) suggesting that TiO2 acts as a modifying oxide. X-ray Photoelectron Spectroscopy (XPS) was used to determine the glass composition and the relative fraction of Bridging Oxygens (BO) to Non-Bridging Oxygens (NBO). XPS revealed that by increasing the concentration of TiO2, the NBO concentration increases, further suggesting the modifying role of Ti. The NBO/BO ratio was found to increase from 1.2 to 9.0 as the TiO2 content increased from 0 to 20 mol% additions. Raman spectroscopy was used to determine the Q-Structure of the glass series and found that the addition of TiO2 reduced the Raman shift from containing predominantly Q1/Q2 units when no Ti was present to Q0/Q1 with TiO2 additions.  相似文献   

17.
The effect of doping CuO-ZnO system with CeO2 on its surface and catalytic properties was investigated using nitrogen adsorption at −196 °C, EDX technique and catalysis of CO oxidation by O2 at 100-200 °C. Pure mixed solids were prepared by thermal decomposition of copper/zinc mixed hydroxides at 400 °C. The doped solids were obtained by impregnating a known mass of mixed hydroxides with calculated amount of cerium ammonium nitrate followed by drying then calcination at 400 °C. The dopant concentration was 1.5, 3.0 and 4.5 mol% CeO2. The results revealed that CeO2-doping modified the surface atomic Cu/Zn ratio of the system investigated and changed the crystallite size of both CuO and ZnO phases. The increase of the amount of dopant added changed the major phase present. This treatment decreased the specific surface area of doped solids. The doping process modified also the catalytic activity in a manner dependent on both mode of preparation and dopant concentration. However, CeO2-doping did not modify the mechanism of the catalytic reaction but changed the concentration of catalytically active sites involved in the catalyzed reactions.  相似文献   

18.
P. Srinivasa Rao 《Journal of Non》2011,357(21):3585-3591
The variation in physical, structural and electrical properties has been studied as a function of Bi2O3 content in 20ZnF2-(10 + x) Bi2O3-(70-x) P2O5, 0 ≤ x ≤ 10 mol% glasses, which were prepared by melt quenching technique and characterized by differential thermal analysis (DTA). Colorless samples, which have no absorption peaks, are obtained for 10 and 12 mol% of Bi2O3 and the glasses are slowly becoming brownish from 15 to 20 mol% of Bi2O3 which exhibit two absorption peaks at ~ 370 nm, ~ 450 nm correspond to Bi° transitions 4S3/2 → 2P3/2 and 4S3/2 → 2P1/2 respectively. The decrease in 3P1 → 1S0 transition of Bi3+ photo luminescence emission for 18 and 20 mol% of Bi2O3 and increase in optical absorption area shows the reduction of Bi3+ to Bi°. From FTIR studies it is observed that an addition of Bi2O3 decreases the P―O―P covalent bond by forming P―O―Bi bonds due to high polarizing nature of Bi3+ ions. Dielectric parameters like ε', tan δ and a.c. conductivity σac are found to increase and activation energy for a.c. conduction is found to decrease with the increase in the concentration of Bi2O3. Density of defect energy states is found to increase for higher concentration of Bi2O3 and is discussed according to quantum mechanical tunneling (QMT) model.  相似文献   

19.
The thermodynamics of the redox equilibrium of Cu+/Cu2+ were determined by square-wave voltammetry in glass melts with the base mol% compositions x Na2O · (100 − x) SiO2 (x = 15, 20, 26 and 33) and (26 − x) Na2O · x CaO · 74 SiO2 (x = 0, 5, 10 and 15) doped with 1 mol% CuO in the temperature range from 850 to 1150 °C. All recorded voltammograms showed two maxima attributed to the reductions of Cu2+ to Cu+ and Cu+ to metallic copper. Both peaks are shifted to smaller potentials with decreasing temperature. With increasing melt basicity, the [Cu+]/[Cu2+]-ratio first increases, and remains constant for optical basicities >0.56. The effect of composition on the redox equilibrium is explained by the incorporation of both Cu+ and Cu2+ in octahedral coordination into the melt structure.  相似文献   

20.
Glasses in the MoO3-CuO-PbO system are obtained at high cooling rates (104-105 K/s) and characterized using X-ray diffraction (XRD), differential thermal analysis (DTA), infrared (IR) and X-ray photoelectron spectroscopy (XPS). Two glass formation regions are determined: one with compositions having a high MoO3 content (50-80 mol%) and the other in the PbO-rich compositions (65-80 mol%). In the region of MoO3-rich compositions the building units of the amorphous network are МоО6, МоО4 and CuO4 groups. For these high MoO3 contents and respectively low PbO concentrations, the lead oxide is supposed to act as a network modifier while at high content PbO is found to be the main glass network former. In latter case the structure of glasses is formed by chains of PbOn (n = 3, 4) polyhedra, between which there are isolated MoO4 and CuO4 complexes. IR and XPS data reveal the existence of Mo-O-Mo, Mo-O-Me(Me’) (where Me = Cu2+, Cu1+ and Me’ = Pb) and Me(Me’)-O-Me(Me’) bonds in the amorphous network. Surprising result is found for low PbO content (10 mol%) where the lead oxide acts as glass network modifier: the actual MoO3 content drops strongly which is accompanied with a significant increase of the actual CuO content with respect to their nominal MoO3-CuO composition. Such effect is not observed in PbO-rich composition (70 mol%) where PbO has a role of network former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号