首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optical properties of Cr3+ ions in lithium metasilicate (Li2O · SiO2) transparent glass-ceramics were investigated. The main crystalline phase precipitated was the lithium metasilicate (Li2O · SiO2) crystal. The percent crystallinity and crystalline size were ranging 65-75% and 20-35 nm, respectively. The color changes drastically to deep pink from emerald green upon crystallization. New and strong absorption bands appeared and the absorption intensity increases by about 10 times that in glass. These new absorption bands are found to be derived from Cr3+ ions in octahedral sites in the lithium metasilicate crystal lattice. Cr3+ ions substitute for three Li+ ions and occupy the distorted octahedral site between single [SiO4]n chains of lithium metasilicate crystal. The ligand field parameters can be estimated: 10Dq = 13 088 cm−1, B = 453 cm−1, Dq/B = 2.89 and C = 2036 cm−1. The near-infrared luminescence centered at 1250 nm was not detected in the deep pink glass-ceramics unlike emerald green glass.  相似文献   

2.
Optical and scintillation properties of Pr-doped Li-glass, 20Al(PO3)3-80LiF:Pr 3%, have been studied for applications in neutron detection systems. Based on optical transmission and reflectivity, the absorption coefficient and refractive index were calculated from the Beer Lambert law. The absorption edge was apparently shifted to the longer wavelength from 160 nm to 240 nm due to 4f → 5d transitions of Pr ions. The strong absorption peaks of praseodymium 4f → 4f transitions were observed from 420 nm to 500 nm and around 590 nm. The radio-luminescence spectrum excited by 241Am 5.5 MeV α source was measured. Strong emission peaks were observed around 250 nm. The α-ray excited pulse height spectrum and decay kinetics were also examined. Light yield was estimated to be 400 ± 40 photons/5.5 MeV α and the main component of the decay time was evaluated to be about 12 ns. Furthermore, the pulse height spectrum of the glass excited by 252Cf neutrons was also measured, and the light yield was estimated to be 140 ± 10 photons/neutron.  相似文献   

3.
The Er3+ doped transparent oxyfluoride glass ceramics were obtained by appropriate heat treatment of the precursor glasses with composition (mol%) 50SiO2-xPbF2-(50 − x)PbO-0.5ErF3. The microstructure and optical properties of the glasses and glass ceramics were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), absorption spectra and luminescence spectra. The intensity of upconversion luminescence significantly increased in glass ceramics compared to that in precursor glass. The emission bands centered around 660 nm (4F9/2 → 4I15/2) and 410 nm (2H9/2 → 4I15/2) were simultaneously observed in glass ceramics but cannot be seen in the corresponding precursor glass. The influence of different PbF2 content on the microstructure and upconversion luminescence of the samples was analyzed in detail. The results indicated that with the increase of PbF2 content, the Ω2 was almost the same and the ratios of red to green upconversion luminescence decreased in glass ceramics.  相似文献   

4.
Erbium-doped glasses with composition xGeO2-(80 − x)TeO2-10ZnO-10BaO were prepared by melt-quenching technique. The phonon sideband spectra and the optical absorption band edges for the host matrix were confirmed by means of the spectral measurements. Standard Judd-Ofelt calculations have been completed to these glasses. The dependence of up-conversion and infrared emission under 980 nm excitation on the glass composition was studied. The quantum efficiencies for the 4I13/2 → 4I15/2 transition of trivalent erbium in the glasses were estimated.  相似文献   

5.
Glasses of the system: (70−x) TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by melt quench technique. Dependencies of their glass transition temperatures (Tg) and infrared (IR) absorption spectra on composition were investigated. It is found that the gradual replacement of oxides, TeO2 by Li2O, decreases the glass transition temperature and increases the fragility of the glasses. Also, IR spectra revealed broad weak and strong absorption bands in the investigated range of wave numbers from 4000 to 400 cm−1. These bands were assigned to their corresponding bond modes of vibration with relation to the glass structure.  相似文献   

6.
Glasses in the ternary system PbO-MoO3-P2O5 were prepared in three compositional series (100 − x)[0.5PbO-0.5P2O5]-xMoO3 (A), 50PbO-yMoO3-(50 − y)P2O5 (B) and (50 − z)PbO-xMoO3-50P2O5 (C) and their structure was studied by Raman and 31P NMR spectroscopies. In the compositional series (100 − x)[0.5PbO-0.5P2O5]-xMoO3 homogeneous glasses were prepared in the concentration region of 0-70 mol% MoO3. Their glass transition temperature increases with increasing MoO3 content having a maximum at x = 50 mol% MoO3. 31P MAS NMR spectra reveal that in the glass series (A) the incorporation of MoO3 results in the shortening of phosphate chains and gradual transformation Q2 units into Q2 and Q0 units, prevailing in glasses with a high MoO3 content. Octahedral structural units MoO6 dominate in most glass compositions and they are present also in the structure of Pb(MoO2)2(PO4)2 compound corresponding to the glass composition 50Pb(PO3)2-50MoO3. The analysis of Raman spectra of glasses of the (B) series with a high MoO3 content showed the transformation of octahedral MoO6 units into tetrahedral MoO4 units.  相似文献   

7.
In this work, new glass compositions in the TeO2-GeO2-Nb2O5-K2O system have been prepared and studied. The germanotellurite glasses were prepared by melt-quenching and their density, refractive index and characteristic temperatures have been determined. The structure of these glasses has been studied by infrared and Raman spectroscopies.The progressive replacement of TeO2 by GeO2 led to an increase of the glass transition and crystallisation temperatures of the glasses and a simultaneous decrease of their density and refractive index. Typical density and refractive index values of these glasses ranged from 4.98 to 3.85 g cm− 3 and 2.08 to 1.79, respectively, with increasing GeO2 content. The infrared spectra are dominated by a band ~ 640 cm− 1 in the tellurite glass and ~ 800 cm− 1 in the germanate glass. The Raman spectra of the germanotellurite glasses present an intense boson peak between ~ 34 and 47 cm− 1, together with high frequency peaks at ~ 670 cm− 1 and ~ 470 cm− 1 for high tellurite and high germanate glass compositions, respectively. The vibrational spectra of these germanotellurite glasses indicate that the glass network consists basically of TeO4 and [TeO3]/[TeO3 + 1] units, mixed with GeO4 and NbO6 polyhedra.  相似文献   

8.
A laser crystal Er3+:YbVO4 has been grown by the Czochralski method with excellent quality. The rocking curve from the (0 0 4) diffraction plane of the as-grown Er3+:YbVO4 crystal was measured and the full-width at half-maximum value was found to be 19.80 in. for the (0 0 4) face. The effective segregation coefficient of Er3+ was studied by X-ray fluorescence and the crystal structure was determined by means of X-ray diffraction analysis. The polarized absorption spectra and the fluorescence spectra of Er3+:YbVO4 were measured at room temperature. The spectral parameters were calculated based on the Judd–Ofelt theory, and the intensity parameters Ω2, Ω4 and Ω6 are found to be 5.50×10−20, 1.96×10−20 and 2.34×10−20 cm2, respectively. The emission cross-section has been calculated by the Fuechtbauer–Ladenbury method. The spectroscopic parameters of Er3+:YbVO4 are compared with other typical laser hosts.  相似文献   

9.
Er3+-doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Ω2 = 2.95 × 10−20, Ω4 = 0.91 × 10−20, and Ω6 = 0.36 × 10−20 cm2. Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2, respectively, were observed. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived 4I11/2 level is supposed to serve as the intermediate state responsible for the upconversion processes.  相似文献   

10.
S. Rada  E. Culea 《Journal of Non》2011,357(7):1724-1728
Glasses in the quaternary system 0.05Al2O3·0.95[xGd2O3·(100-x)(7GeO2·3PbO)] with 0 ≤ x ≤ 40 mol% have been prepared from melt quenching method. In this paper, we investigated structural and optical properties in gadolinium-alumino-lead-germanate glasses through investigations of FTIR (Fourier-Transform Infrared Spectroscopy) and UV-VIS (Ultra-Violet) spectroscopy.The observations presented in these mechanisms show that by increasing Gd2O3 content up to 40 mol%, the glass network modification has taken place mainly in the germanate part, while the excess of oxygen can be accommodated in the host network by the creation of shorter rings of [Ge2O7] structural units and the formation of [AlO4] structural units. The affinity pronounced of the gadolinium cations towards germanate structural units produces the formation of the Gd2Ge2O7 crystalline phase.The UV-VIS spectroscopy data show the charge transfer transitions of Pb+ 2-O− 2, Al+ 3-O− 2 and Gd+ 3-O− 2, respectively. The additional absorption in the range of 300 to 600 nm was attributed to other types of defects such as: non-bridging oxygen ions, change in valency of ions and other color centers.The values of the direct optical band gap of the glasses are determined from the optical absorption spectra. By increasing Gd2O3 content in the glass matrix, the optical band gap energy increases indicating changes of the lattice parameters by Gd2O3 incorporation.  相似文献   

11.
Fluorescence waveforms from the (3P0 + 3P1) manifold in Pr3+ doped ZBAN glass at wavelengths of 520, 635 and 695 nm were measured for Pr3+ concentrations from 4 to 12 mol%. The waveforms were found to be non-exponential with decay rates rapidly increasing with Pr3+ concentration and independent of whether the 3P0 or the 3P1 level was excited. The multipolar energy transfer model was used to analyse the waveforms and this showed that concentration quenching was due to cross-relaxation by dipole-dipole interaction. The critical concentration, at which the cross-relaxation rate equals the intrinsic decay rate, was found to be of 2.06 × 1026 m−3 (1.20 mol%). There was no evidence of excitation diffusion for Pr3+ concentrations of up to 12 mol%.  相似文献   

12.
Oxygen-containing germanium (Ge) single crystals with low density of grown-in dislocations were grown by the Czochralski (CZ) technique from a Ge melt, both with and without a covering by boron oxide (B2O3) liquid. Interstitially dissolved oxygen concentrations in the crystals were determined by the absorption peak at 855 cm−1 in the infrared absorption spectra at room temperature. It was found that oxygen concentration in a Ge crystal grown from melt partially or fully covered with B2O3 liquid was about 1016 cm−3 and was almost the same as that in a Ge crystal grown without B2O3. Oxygen concentration in a Ge crystal was enhanced to be greater than 1017 cm−3 by growing a crystal from a melt fully covered with B2O3; with the addition of germanium oxide powder, the maximum oxygen concentration achieved was 5.5×1017 cm−3. The effective segregation coefficients of oxygen in the present Ge crystal growth were roughly estimated to be between 1.0 and 1.4.  相似文献   

13.
S. Basu  H. Jain 《Journal of Non》2008,354(28):3278-3283
We have explored the development of multifunctionalities viz, optical nonlinearity, high dielectric constant and ferromagnetic behavior in a nanostructured silica based glass of 14.0Na2O, 26.0BaO, 26.0TiO2, 16.0B2O3, 17.0SiO2, 1.0NiO (mol%) composition. A heat treatment at 863 K for 4 h led to nonlinear refractive index and absorption coefficients at wavelength 800 nm of 0.11 × 10−19 m2/W and 1.15 × 10−3 cm/GW, respectively. A heat treatment at 1073 K for 2 h followed by 1113 K for 3 h increased the dielectric constant from 11 to 50, apparently due to the formation of nanocrystals of BaTiO3 within the glass medium. Glass samples reduced at 923 K for 1 h exhibited ferromagnetic behavior due to the presence of nickel nanoparticles.  相似文献   

14.
Glasses of the 25Ln2O3-25B2O3-50GeO2 composition (mol%) where Ln = (1 − x − y) La, xEr, yYb, with an addition of Al2O3 have been obtained and their luminescent characteristics examined. Probabilities of spontaneous emission, peak sections of the induced radiation and quantum yields of luminescence corresponding to the 2F5/2 → 2F7/2 transition of Yb3+ ions and the 4I13/2 → 4I15/2 transition of Er3+ ions have been defined. Quantum yield of Yb3+ luminescence for glasses with low Yb2O3 concentration reaches values closed to 100%. The luminescence spectrum of Er3+ ions exhibits a broad peak at about 1530 nm with effective width more than 80 nm when excited by irradiation at λ = 977 nm. Spontaneous emission probability and peak stimulated radiation section for Er3+ luminescence band 4I13/2 → 4I15/2 were determined to be equal to 175 s−1 and 4.9 × 10−21 cm2 respectively. Effective quenching of both rare-earth activators by oscillations with ν ≈ 2630 and 2270 cm−1 was found. These oscillators, most likely, represent OH-groups connected by a hydrogen bond with non-bridging oxygen atoms in the borogermanate matrix.  相似文献   

15.
Tomoharu Hasegawa 《Journal of Non》2011,357(15):2857-4499
Glasses of the Bi2O3-TeO2-B2O3 ternary system were developed and their linear and nonlinear optical properties were investigated. The absorption edges of these glasses were found to be 367-384 nm with a good transmittance in visible wavelength, although they exhibit the refractive indices as high as 1.98-2.12 at 633 nm. The absorption edges are quite steep and they are analyzed by the Urbach theory. The obtained Urbach energies of these glasses are 73-79 meV which are comparable to silica glasses. The high refractive index and its glass composition dependency are discussed according to the basics of the electronic polarizability and optical basicity. The high third order nonlinear susceptibility χ(3) = 2.0 × 10− 12 esu at 800 nm was also obtained in the 36Bi2O3-18TeO2-46B2O3 glass.  相似文献   

16.
Optical properties of Er3+-doped ZBLAN glass matrix have been studied by luminescence spectroscopy under 488 nm excitation. The spectrum of the 4S3/24I15/2 transition, carried out at temperature T = 2 K, shows a new line in the lowest energy region. This new line, centered at 17 996 cm−1, was attributed to the lower transition between the Stark components of the 4S3/24I15/2 transition. Measurements from T = 2 K to room temperature show the disappearance of this new line. From the results we estimate the splitting of 415 cm−1 for the ground state and 100 cm−1 for the 4S3/2 excited multiplet. The experimental result allows us to assign the positions of the eight Stark components of the ground state multiplet of the Er3+ in the ZBLAN glass matrix.  相似文献   

17.
The optical absorption spectra of xPbO-(100 − x) P2O5 glasses where x = 5, 10, 15, 20, 25, and 30 is reported. The spectral absorption of these glasses was measured in the spectral range 300-900 nm at room temperature. Optical absorption spectra show that the absorption edge has a tail extending towards lower energies. The edge shifts nearly linearly towards higher energies with increasing PbO content. The degree of the edge shift was found to depend on the PbO content and is mostly related to the structural rearrangement and the relative concentrations of the glass basic units. The optical energy gap increases, from 2.55 to 3.05 eV by increasing PbO content from 5 to 30 mol%. The width of the localized states is decreased by increasing PbO content.  相似文献   

18.
S. Polosan  M. Secu 《Journal of Non》2011,357(3):1110-1113
Bismuth-germanate glass ceramics with the composition 40% Bi2O3-60% GeO2 (in molar percents) were prepared through controlled crystallization of melt-quenched glass. The Raman and FTIR spectra recorded in the as-made glasses show broad bands at 240, 400, 780 cm− 1 and 400, 745 cm− 1 have been assigned Ge-O bonds which appear right after preparation. X-ray diffraction has shown that the as-made glasses are amorphous, but after annealing above the crystallization temperature at 558 °C, BGO nano-crystallites with a size of about 50 nm precipitate in the glass matrix. The Raman and FTIR spectra reveal sharp peaks associated to the “internal” and “external vibrations” of GeO4 tetrahedral groups inside the BGO nano-crystallites. In the glass ceramic sample the transparency region is shifted at longer wavelengths compared to as-made glass, due to the Rayleigh scattering on the BGO nano-crystallites.  相似文献   

19.
Room temperature electron spin resonance (ESR) spectra and temperature dependent magnetic susceptibility measurements have been performed to investigate the effect of iron ions in 41CaO · (52 − x)SiO2 · 4P2O5 · xFe2O3 · 3Na2O (2 ? x ? 10 mol%) glasses. The ESR spectra of the glass exhibited the absorptions centered at g ≈ 2.1 and g ≈ 4.3. The variation of the intensity and linewidth of these absorption lines with composition has been interpreted in terms of variation in the concentration of the Fe2+ and Fe3+ in the glass and the interaction between the iron ions. The magnetic susceptibility data were used to obtain information on the relative concentration and interaction between the iron ions in the glass.  相似文献   

20.
P. Srinivasa Rao 《Journal of Non》2011,357(21):3585-3591
The variation in physical, structural and electrical properties has been studied as a function of Bi2O3 content in 20ZnF2-(10 + x) Bi2O3-(70-x) P2O5, 0 ≤ x ≤ 10 mol% glasses, which were prepared by melt quenching technique and characterized by differential thermal analysis (DTA). Colorless samples, which have no absorption peaks, are obtained for 10 and 12 mol% of Bi2O3 and the glasses are slowly becoming brownish from 15 to 20 mol% of Bi2O3 which exhibit two absorption peaks at ~ 370 nm, ~ 450 nm correspond to Bi° transitions 4S3/2 → 2P3/2 and 4S3/2 → 2P1/2 respectively. The decrease in 3P1 → 1S0 transition of Bi3+ photo luminescence emission for 18 and 20 mol% of Bi2O3 and increase in optical absorption area shows the reduction of Bi3+ to Bi°. From FTIR studies it is observed that an addition of Bi2O3 decreases the P―O―P covalent bond by forming P―O―Bi bonds due to high polarizing nature of Bi3+ ions. Dielectric parameters like ε', tan δ and a.c. conductivity σac are found to increase and activation energy for a.c. conduction is found to decrease with the increase in the concentration of Bi2O3. Density of defect energy states is found to increase for higher concentration of Bi2O3 and is discussed according to quantum mechanical tunneling (QMT) model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号