首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new homologues of 1,4-diphenylbutadiene, namely, 1-(2-benzazolyl)-4-(p-dimethylaminophenyl)buta-1,3-diene have been synthesized and their absorption and fluorescence properties have been investigated in different organic solvents. The absorption spectra are less sensitive to the solvent polarity than the corresponding fluorescence spectra, which show dual emission and high solvatochromic effect in polar solvents. Using an efficient solvatochromic method, a large excited state dipole moment parallel to the smaller ground state dipole moment was calculated. Other properties of the lowest excited state such as the planar ICT Bu nature, fluorescence quantum yield and the basicity of the two nitrogen atoms (of the benzoxazole or benzothiazole ring as well as the amino group) were studied by spectroscopic techniques and semiempirical AM1 quantum chemical calculations. The findings have been presented and discussed along with the promising fluorescence probing and pH-sensing properties of these two dienes. The main spectroscopic properties of the two derivatives have been also compared.  相似文献   

2.
3.
The ground state (mu(g)) and excited state (mu(e)) dipole moments of 15 hemicyanine dyes were studied at room temperature. They were estimated from solvatochromic shifts of the absorption and the fluorescence spectra as function of the solvent dielectric constant (varepsilon) and refractive index (n). In this paper we applied the Stokes shift phenomena not only for the determination of the difference in the dipole moment of excited state and ground state, but to determine the value of polarizability alpha as well. The obtained results show that excited state dipole moments of hemicyanine dyes are in the range from 5 to 15 Debye, and the difference between the excited and ground state dipole moments vary from 1 to 7 Debye. The excited and ground state dipole moments difference (mu(e)-mu(g)) obtained for selected dyes are positive. It means that the excited states of the dyes under the study are more polar than the ground state ones. Additionally, the value of both polarizability (alpha) and the Onsager radius (a) of each investigated hemicyanine dye molecule are determined, and the ratio of alpha/a(3) for each dye were calculated, which oscillate from 0.29 to 5.21. The increase in dipole moment has been explained in terms of the nature of excited state and its resonance structure.  相似文献   

4.
The photophysical properties of newly synthesized bischromophoric solvatochromic stilbazolium dyes, 1,3-bis-[4-(p-N,N-dialkylaminostyryl)pyridinyl]propane dibromides (C1-C9), were studied in a series of solvents and their spectroscopic properties were compared with structurally related, monochromophoric styrylpyridinium dyes (SP1-SP9). The position of the UV-vis absorption spectra maximum of novel dyes is only slightly solvent polarity dependent in contrast to the fluorescence spectra that show pronounced solvatochromic effect demonstrated by a large Stokes shifts. The influence of the solvent on absorption and emission spectra, and the solvatochromic properties observed for both ground and first excited states for all the dyes were used for the evaluation of their excited state dipole moments. The ground state dipole moments of both mono- and bischromophoric dyes were established by applying ab initio calculations. The calculations and measurements unexpectedly show that the bischromophoric dyes are characterized by ground state dipole moments being equal to about half of that characterizing their monomeric equivalents, while the excited state dipole moments of bischromophoric dyes are about 10-25% higher in comparison to their monomeric equivalents.  相似文献   

5.
Electronic absorption and dual fluorescence spectra of 6,8-diphenylimidazo[1,2-α]pyrazine (68DIP) was recorded in various solvents with different polarity at room temperature. The ground state (μg) and the excited state (μg) dipole moments of 68DIP were estimated from solvatochromic shifts of absorption and fluorescence spectra as a function of the dielectric constant (?) and refractive index (n). The results show that the value of excited state dipole moment in SE: μeSE=2.8772 D and twisted intramolecular charge transfer (TICT) excited equilibrated state dipole moment value of μeLE=2.9744 D was found. The solvent dependent spectral shifts in absorption and fluorescence spectra were analyzed by the polarizability-polarity and Kamlet-Taft parameters.  相似文献   

6.
Electronic absorption and fluorescence spectra of mono, di, and tri-nitro benzimidazolones are measured at room temperature (298 K) in nine solvents with different polarities and the observed shifts are compared with benzimidazolone. Ground and excited state electric dipole moments are determined using the solvatochromic method based on the bulk solvent properties, F(1)(ε, n) and F(2)(ε, n). A reasonable agreement is observed between the experimental and ab initio dipole moments. Change in dipole moment is also determined using the solvatochromic method based on the microscopic solvent polarity parameter, (E(T)(N)), which considers the polarization changes due to hydrogen bonding in different solvents. It has been observed that the correlation of the solvatochromic Stokes shifts with the parameter (E(T)(N)), is superior to that derived using bulk solvent polarity functions for all the benzimidazolones reported in the present study. Calculated difference between excited state and ground state dipole moments seems to be a good measure of the effect of nitro group when correlated with (E(T)(N)).  相似文献   

7.
The photophysical properties of 3-[2-(4-diphenylaminophenyl)benzoxazol-5-yl]alanine methyl ester (1b) and its Boc derivative (1a) were studied in a series of solvents. Its UV-Vis absorption spectra are less sensitive to the solvent polarity than the corresponding fluorescence spectra which show pronounced solvatochromic effect leading to large Stokes shifts. Using an efficient solvatochromic method, based on the molecular-microscopic empirical solvent polarity parameter E(T)(N), a large change of the dipole moment on excitation has been found. From an analysis of the solvatochromic behaviour of the UV-Vis absorption and fluorescence spectra in terms of bulk solvent polarity functions, f(epsilon(r),n) and g(n), a large excited-state dipole moment (mu(e) = 11D), almost perpendicular to the smaller ground-state dipole moment, was observed. This demonstrates the formation of an intramolecular charge-transfer excited state. Large changes of the fluorescence quantum yields as well as the fluorescence lifetimes with an increase of a solvent polarity cause that the new non-proteinogenic amino acid, 3-[2-(4-diphenylaminophenyl)benzoxazol-5-yl]-alanine methyl ester, is a new useful fluorescence probe for biophysical studies of peptides and proteins.  相似文献   

8.
Silylboranes with aromatic substituents linked to boron and silicon exhibit an unexpected absorption band in the UV-Vis spectral region. When polar groups were introduced, a marked solvatochromic effect was observed in their fluorescence emission spectra, revealing a strong excited state dipole moment. Semi-empirical MNDO/d and AM1 calculations showed that, upon UV excitation, the polarity of the Si-B bond increased and the aromatic π-electrons migrated toward the Si-B bond, consistent with experimental observations.  相似文献   

9.
Steady-state absorption and fluorescence spectra, and time-resolved fluorescence spectra of coumarin 343 (C343) were measured in different solvents. The effect of the solvent on the spectral properties and dipole moment of the lowest excited state of C343 were investigated. It was found that the absorption and fluorescence spectra red-shifted slightly and strongly with increasing solvent polarity, respectively, because the charge distribution of the excited state leaded to the increasing difference between the absorption and fluorescence spectra with increasing solvent polarity. The dipole moment of the lowest excited state of C343was determined from solvatochromic measurements and the quantum chemical calculation, and the results obtained from these two methods were fully consistent. Investigations of the time-resolved fluorescence of C343 in different solvents indicated that the fluorescence lifetimes increased nearly linearly with increasing solvent polarity from 3.09 ns in toluene to 4.45 ns in water. This can be ascribed to the intermolecular hydrogen bonding interactions between C343 and hydrogen donating solvents.  相似文献   

10.
The photophysical properties of 2‐phenyl‐naphtho[1,2‐d][1,3]oxazole, 2(4‐N,N‐dimethylaminophenyl)naphtho[1,2‐d][1,3]oxazole and 2(4‐N,N‐diphenylaminophenyl) naphtho[1,2‐d][1,3]oxazole were studied in a series of solvents. UV–Vis absorption spectra are insensitive to solvent polarity whereas the fluorescence spectra in the same solvent set show an important solvatochromic effect leading to large Stokes shifts. Linear solvation energy relationships were employed to correlate the position of fluorescence spectra maxima with microscopic empirical solvent parameters. This study indicates that important intramolecular charge transfer takes place during the excitation process. In addition, an analysis of the solvatochromic behavior of the UV–Vis absorption and fluorescence spectra in terms of the Lippert–Mataga equation shows a large increase in the excited‐state dipole moment, which is also compatible with the formation of an intramolecular charge‐transfer excited state. We propose both naphthoxazole derivatives as suitable fluorescent probes to determine physicochemical microproperties in several systems and as dyes in dye lasers; consequence of their high fluorescence quantum yields in most solvents, their large molar absorption coefficients, with fluorescence lifetimes in the range 1–3 ns as well as their high photostability.  相似文献   

11.
The dipole moments of fluorinated anilines in the first excited singlet state (1Lb) have been determined from the solvent shifts of absorption and fluorescence spectra. It is concluded that in the monofluoro isomers as well as in aniline itself this dipole moment must be of the order of 5 debye, whereas the gas phase dipole moment is estimated to be some 2 debye only from Stark effect measurements. Ortho-substituted difluoro- and trifluoroanilines show anomalous Stokes shifts of the absorption and fluorescence spectra which are indicative of substantial reorganization of their nuclear framework in the excited state; in these cases no excited state dipole moment could be determined.  相似文献   

12.
Photophysical properties of hemicyanine dyes (1 - 3) were investigated in solvents of varying polarity and viscosity. Hemicyanines possess relatively low fluorescence quantum yields (1%) in polar solvents. A significant increase in fluorescence quantum yield and lifetimes was observed with increase in viscosity of the solvent medium. The radiative, as well as nonradiative decay channels from the singlet-excited state were investigated by varying the viscosity of the medium. The viscosity-dependent radiationless relaxation observed in hemicyanine dyes is suggestive of a restricted rotor motion in the singlet excited state.  相似文献   

13.
《Tetrahedron》1987,43(8):1771-1774
The polarity of solutions of LiClO4 in acetic acid has been investigated. However, polarity scales based on light absorption, e.g. the π*1-scale, are interfered by aggregation phenomena of the used solvatochromic dyes, whereas solvatochromic fluorescent dyes give proper results.  相似文献   

14.
While the fluorescence of xanthone, thioxanthone and N-methylacridone shows the customary red shift with increasing solvent polarity, as measured by a polarization function, indicating an increase in dipole moment on excitation, the triplet-triplet (T1Tn) absorption spectra are strongly blue shifted, indicating a decrease in dipole moment on excitation.  相似文献   

15.
The UV–vis absorption properties of azo dyes are known to exhibit a variation with the polarity and acidity of the dye environment. The spectral properties of a series of anionic azo dyes were characterized to further probe the interaction of these dyes with two types of surfactant aggregates: (1) the spherical micelles formed in aqueous solution by alkyltrimethylammonium bromide (CnTAB) surfactants with n = 10–16 and (2) the unilamellar vesicles spontaneously formed in water from binary mixtures of the oppositely-charged double-tailed surfactants cationic didodecyldimethylammonium bromide (DDAB) and anionic sodium dioctylsulfosuccinate (Aerosol OT or AOT). The observed dye spectra reflect the solvatochromic behavior of the dyes and suggest the location and orientation of the dye within the surfactant aggregates. Deconvolution of the overall spectra into sums of Gaussian curves more readily displays any contributions of tautomeric forms of the azo dyes resulting from intramolecular hydrogen bonding. The rich variation in UV/vis absorption properties of these anionic azo dyes supports their use as sensitive tools to explore the nanostructures of surfactant aggregates.  相似文献   

16.
Examination of the UV spectra of a large series of solvatochromic indicators of the general formula 1-X-4-NO2-C6H4 in aprotic solvents confirmed the proportionality between the dipole moments of these compounds in the ground (μg) and first electronically excited (1 A 1, μe) states: μe = r μμg. The coefficient r μ was determined by applying the equation of the Bakhshiev-Bilot-Kawski solvatochromism theory both to nonspecifically solvated molecules and to their H complexes with aprotic protophilic solvents. An anisotropy of the electron redistribution was revealed for low-symmetry 1-substituted 2,4-dinitrobenzenes. The r μ value obtained allowed the calculation of the Kamlet-Taft empirical solvatochromic parameter π* on the basis of generalized characteristics of the solvent.  相似文献   

17.
A new method is proposed to estimate the polarizability (αe) of a molecule in an excited state using solvatochromic shift measurements and McRae's equation. In the earlier methods the contribution due to polarizability was not considered. In view of this, the proposed method is also expected to give a better estimation of excited state electric dipole moment (μe) and the (θ) angle between excited and ground state electric dipole moments, μe and μg apart from giving values of polarizability of the molecules in the excited state. This method has been applied in the case of the La band of p-nitro aniline and the results for all the parameters are found to be satisfactory and of right order in comparison with that reported in literature.  相似文献   

18.
In this paper, we described the synthesis and characterization of new diphenylethylene bearing imino group. We concentrated particularly on the investigation of the possibility of the excited state intramolecular charge transfer (ESIPT) of the new dyes experimentally and theoretically. The absorption and fluorescence spectroscopy of the dyes were determined in various solvents. The results showed that the maximal absorption wavelength of 2‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C1 ) and 4‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C2 ) exhibited almost independence on the solvent polarity. While as contrast, the maximal fluorescence wavelength of the dyes showed somewhat dependence on the solvent polarity. In particular, C1 displayed well‐separated dual fluorescence spectroscopy. The second fluorescence peak was characterized with an "abnormal" fluorescence emission wavelength in aprotic solvents with large Stokes shift (ca. 140 nm in THF), which was much more than normal Stokes shift (ca. 30 nm in THF). This emission spectroscopy could be assigned to ESIPT emission. On the other hand, the ESIPT fluorescence of C1 was much reduced or lost in the protic solvents. While, only normal fluorescence emission was detected in various solvents. Although the absorption maxima of C1 exhibited about 10 nm red‐shift with respect to those of C2 , the normal fluorescence maxima of C1 and C2 were almost identical in various solvents. These results suggested that C1 could undergo ESIPT, but C2 was not able to proceed ESIPT. The molecular geometry optimization of phototautomers in the ground electronic state (S0) was carried out with HF method (Hartree‐Fock) and at DFT level (Density Functional Theory) using B3LYP both, while the CIS was employed to optimize the geometries of the first singlet excited state (S1) of the phototautomers of C1 and C2 respectively. The properties of the ground state and the excited state of the phototautomers of C1 and C2 , including the geometrical parameter, the energy, the frontier orbits, the Mulliken charge and the dipole moment change were performed and compared completely. The data were analyzed further based on our experimental results. Furthermore, the absorption and fluorescence spectra were calculated in theory and compared with the measured ones. The rate constant of internal proton transfer (9.831×1011 s?1) of C1 was much lower than that of salicylidene methylamine ( C3 , 2.045×1015 s?1), which was a typical Schiff base compound and was well demonstrated to undergo ESIPT easily under photoexcitation.  相似文献   

19.
4-(Dimethylamino)-4'-cyano-1,4-diphenylbutadiene (DCB) and 4-(dimethylamino)-2,6-dimethyl-4'-cyano-1,4-diphenylbutadiene (DMDCB) have been characterized spectroscopically. Quantum chemical calculations were performed for comparison. Solvatochromic shifts of the fluorescence were strong and showed a linear dependence on the solvent polarity parameters, whereas shifts in the absorption spectra are very weak only correlate better with the polarizability of the solvents. Excited state dipole moments derived from fluorescence using the Onsager model are very large and similar for both compounds. It is concluded that a strongly allowed and highly dipolar pi, pi* state is the lowest excited state in polar solvents. The strong difference in absorption and fluorescence solvatochromic slopes suggests that the simple Onsager model with a point dipole approximation is not sufficient here.  相似文献   

20.
Abstract— Absorption and fluorescence spectra of 5′-deoxypyridoxal (DPL) in various pure solvents and mixtures were recorded both at room temperature and over the range10–65°C. The areas under the absorption bands were analyzed to obtain the mole fraction (fN, fz) of two tautomers (the zwitterionic, Z, and neutral, N, forms) in the ground state. The following spectral parameters were determined from the fluorescence spectra: Stokes shift (Δv), fluorescence quantum yield of the neutral form (QN), fluorescence ratio of the neutral to the zwitterionic form (øNZ) and the rate constant of tautomerization (k1) from Z to N in the excited state. Some of these parameters (fN, Δv, QN, k1) were found to depend on the proton donor character of the solvent, whereas others (øNZ) depended on its dipole moment. Thus, the absorption and fluorescence spectra of DPL allow one to obtain information on the polarity and the concentration of –OH groups on its environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号