首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Y2O3 addition on the phase transition and growth of yttria-stabilized zirconia (YSZ) nanocrystallites prepared by a sol-gel process with various mixtures of ZrOCl2 · 8H2O and Y(NO3)3 · 6H2O ethanol-water solutions at low temperatures has been studied. DTA/TGA, XRD, SEM, TEM and ED have been utilized to characterize the YSZ nanocrystallites. The crystallization temperature of 3YSZ, in which Y2O3/(Y2O3 + ZrO2) = 0.03, gel powders estimated by DTA/TG is about 427 °C. When 3YSZ and 5YSZ gels are calcined at 500-700 °C, their crystal structures as composed of coexisting tetragonal and monoclinic ZrO2, and tetragonal phase decreases with calcination temperature increasing from 500 to 700 °C. Pure cubic ZrO2 is obtained when added Y2O3 is greater than 8 mol%. A nanocrystallite size distribution between 10 and 20 nm is obtained in TEM observations.  相似文献   

2.
Hydrous niobium oxide (Nb2O5·nH2O) nanoparticles had been successfully prepared by water-in-oil microemulsion. They were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTG), Fourier transform infrared spectroscopy (FTIR), BET surface area measurement, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the nanoparticle was exactly Nb2O5·nH2O with spherical shape. Their BET surface area was 60 m2 g−1. XRD results showed that Nb2O5·nH2O nanoparticles with crystallite size in nanometer scale were formed. The crystallinity and crystallity size increased with increasing annealing temperature. TT-phase of Nb2O5 was obtained when the sample is annealed at 550 °C.  相似文献   

3.
Transparent glasses composition of which can be expressed by the formula: (100−x) · (K2O · 2TiO2 · P2O5) · x(K2O · 2B2O3 · 7SiO2), where x=5, 10, 15 and 20 mol% (KTP-xKBS), were obtained by melt quenching technique. The structure and crystallization behavior of these glasses have been examined by Fourier transform infrared spectroscopy, differential thermal analysis and X-ray diffraction. In spite of their nominal composition, the studied glasses exhibit a similar oxygen polyhedra distribution. However, significant differences were found in the trigonal BO3 units amount. During DTA runs all the examined glasses devitrify in two steps. In the former, very small crystals of an unknown crystalline phase are produced. In KTP-5KBS and KTP-10KBS glasses anatase phase was also detected. Attempts were made in order to identify the unknown phase (UTP) for which a AB3(XO4)2(OH)6 Crandallite-type structure was proposed where the A, B and X sites were occupied by K, Ti and/or Al, and P, respectively. In the second devitrification step the crystallization of the KTiOPO4 phase occurs while the UTP phase previously formed disappears. Isothermal heat treatments performed at temperature just above Tg have allowed one to obtain transparent crystal-glass nanocomposites, formed by crystalline nanostructure of the UTP phase uniformly dispersed in the amorphous matrix.  相似文献   

4.
The phase separation and crystallization behavior in the system (80 − X)SiO2 · X(Al2O3 + P2O5) · 5B2O3 · 15Na2O (mol%) glasses was investigated. Glasses with X = 20 and 30 phase separated into two phases, one of which is rich in Al2O3-P2O5-SiO2 and forms a continuous phase. Glasses containing a larger amount of Al2O3-P2O5 (X = 40 and 50) readily crystallize and precipitates tridymite type AlPO4 crystals. It is estimated that the phase separation occurs forming continuous Al2O3-P2O5-SiO2 phase at first, and then tridymite type AlPO4 crystals precipitate and grow in this phase. Highly transparent glass-ceramics comparable to glass can be successfully obtained by controlling heat treatment precisely. The crystal size and percent crystallinity of these transparent glass-ceramics are 20-30 nm and about 50%, respectively.  相似文献   

5.
A series of La-doped SnO2 nanopowders with various dopant concentrations were prepared by chemical co-precipitation technique, and the nanopowders prepared were characterized by differential scanning calorimeter (DSC), thermo-gravimetric (TG), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results show that La doping can obviously prevent the growth of nanosized SnO2 crystallites. When the La concentration reaches and surpasses 5 at.%, SnO2 crystallite size reaches a minimum value and remains almost constant. With the increase of La concentration, La tends to dissolve in the bulk phase of SnO2 to form solid solution below 10 at.% addition and then starts to disperse onto the surface of the solid solution as a monolayer above 10 at.%. The effect of La doping on hindering crystallite growth can be attributed to the solute drag and lattice distortion resulting from La dissolving in the bulk phase of SnO2 to form solid solution, rather than the monolayer of La on the surfaces of the SnO2 powders.  相似文献   

6.
Robert Carl 《Journal of Non》2007,353(3):244-249
Glasses with the compositions xNa2O · 10MgO · (90 − x)SiO2, 10Na2O · xMgO · (90 − x)SiO2, 5Na2O · 15MgO · xAl2O3 · (80 − x)SiO2, xNa2O · 10MgO · 10Al2O3 · (80 − x)SiO2, 10Na2O · 10MgO · xAl2O3 · (80 − x)SiO2, 10Na2O · 5MgO · 10Al2O3 · (80 − x)SiO2 were melted and studied using UV-vis-NIR spectroscopy in the wavenumber range from 5000 to 30 000 cm−1. At [Al2O3] > [Na2O], the UV-cut off is strongly shifted to smaller wavenumbers and the NIR peak at around 10 000 cm−1 attributed to Fe2+ in sixfold coordination gets narrower. Furthermore, the intensity of the NIR peak at 5500 cm−1 increases. This is explained by the incorporation of iron in the respective glass structures.  相似文献   

7.
The crystallization behavior of glass with the composition: 55.6 mol% SiO2, 22.8 mol% Al2O3, 17.7 mol% ZnO and 3.84 mol% of TiO2 as nucleating agent and with different particle sizes has been studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and tranmission electron microscopy (TEM). In glass powders two crystalline phases: zinc-aluminosilicate s.s. with high-quartz structure, Znx/2AlxSi3−xO6, (x varies dependent on heat-treatment temperature) and gahnite are formed. The ratio of these phases depends on particle sizes. In bulk glass, however, gahnite is the sole crystalline phase. The composition of initially formed zinc-aluminosilicate s.s. was determined by Rietveld refinement of XRD patterns to be Zn0.69Al1.38Si1.62O6. With temperature increase, the amount of zinc-aluminosilicate s.s decreased with simultaneous reduce of zinc and aluminum incorporated in the structure. Eventually at 1423 K almost pure high-quartz structure was formed. The activation energies of zinc-aluminosilicate s.s. and gahnite crystallization were determined by non-isothermal method to be 510 ± 18 and 344 ± 17 kJ mol−1, respectively. The latter value matches well with those cited in literature for crystal growth of gahnite in similar glasses. That is attributed to the fact that the high-quartz structure acts as a precursor for gahnite crystallization.  相似文献   

8.
Fabrication of TeO2-Bi2O3-ZnO glass ceramics with high transmittance in the near infrared (NIR) region is reported in the present work. Transparent tetragonal bipyramid crystals, tens of micrometers in size, with a refractive index closely matched to that of the glass matrix were formed using a two-step heat treatment. Nucleation- and growth-like curves for this crystal phase were determined using Differential Scanning Calorimetry (DSC). The crystalline phases present in the glass ceramics were identified via x-ray diffraction as a function of heat treatment. The lowest absorption coefficient of glass ceramic is approximately 0.5/cm in the near infrared region (1.2 to 2.8 μm).  相似文献   

9.
L.Y. Zhu 《Journal of Non》2009,355(1):68-207
ZrxTi1−xO2 (x = 0.1-0.9) fibers were prepared by the sol-gel dry-spinning method. Polyacetylacetonatozirconium (PAZ) and tetrabutyl titanate (C16H36O4Ti) were used as raw materials. The green fibers were obtained from the amorphous spinnable solution and then heat-treated to convert into polycrystalline fibers. The main phase changes from TiO2 to zirconium titanate (ZT) and then tetragonal ZrO2 with increasing ZrO2 content. The crystallization temperature varied with the molar ratio of Zr:Ti. The heat-treated fibers at 1050 °C have few pores and no cracks with diameters of 10-20μm and lengths of 1-5 cm.  相似文献   

10.
X.L. Duan  C.F. Song  F.P. Yu  D.R. Yuan 《Journal of Non》2008,354(29):3516-3519
Co2+-doped MgAl2O4 nanocrystalline powders were prepared by co-precipitation method. The gels and/or calcined samples were characterized by means of thermogravimetry and differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectrum and near-infrared absorption spectrum. MgAl2O4 nanocrystals were produced by calcining the gel above 800 °C, with the crystallite size of 10-30 nm in the temperature range of 800-1100 °C. The influence of pH value of precipitant solution on the dispersing of powders was studied and the result showed that Co:MgAl2O4 nanocrystalline powders exhibited good dispersion when pH = 11. The absorption spectrum of Co2+-doped MgAl2O4 exhibited a broad absorption band in the wavelength range of 1200-1600 nm, which indicated that Co2+ ions substituted for the tetrahedrally coordinated Mg2+ ions in the MgAl2O4 lattice.  相似文献   

11.
Room temperature electron spin resonance (ESR) spectra and temperature dependent magnetic susceptibility measurements have been performed to investigate the effect of iron ions in 41CaO · (52 − x)SiO2 · 4P2O5 · xFe2O3 · 3Na2O (2 ? x ? 10 mol%) glasses. The ESR spectra of the glass exhibited the absorptions centered at g ≈ 2.1 and g ≈ 4.3. The variation of the intensity and linewidth of these absorption lines with composition has been interpreted in terms of variation in the concentration of the Fe2+ and Fe3+ in the glass and the interaction between the iron ions. The magnetic susceptibility data were used to obtain information on the relative concentration and interaction between the iron ions in the glass.  相似文献   

12.
Growth of tin oxide thin films using molecular beam epitaxy in a pyrolyzed nitrogen dioxide atmosphere on a titanium dioxide (1 1 0) substrate was investigated using X-ray photoelectron spectroscopy (XPS), electron diffraction, and atomic force microscopy (AFM). Properties of deposited films were studied for their dependence on substrate temperature and oxidation gas pressure. Analyses using XPS data revealed that tin atoms were fully oxidized to Sn4+ and SnO2 films were grown epitaxially in deposition conditions of substrate temperatures of 627 K or higher and NO2 pressure greater than 3×10−3 Pa. At a substrate temperature of 773 K, a smooth surface with atomic steps was visible in the SnO2 films, but above or below this temperature, fine grains with crystal facets or porous structures appeared. At pressures of 8×10−4 to 3×10−4 Pa, the randomly oriented SnO phase was dominantly grown. Further decreasing the pressure, the Sn metal phase, which was epitaxially crystallized at less than 500 K, was also grown.  相似文献   

13.
Glasses with the basic compositions 10Na2O · 10CaO · xAl2O3 · (80 − x)SiO2 (x=0, 5, 15, 25) and 16Na2O · 10CaO · xAl2O3 · (74 − x)SiO2 (x=0, 5, 10, 15, 20) doped with 0.25-0.5 mol% SnO2 were studied using square-wave-voltammetry at temperatures in the range from 1000 to 1600 °C. The voltammograms exhibit a maximum which increases linearly with increasing temperature. With increasing alumina concentration and decreasing Na2O concentration the peak potentials get more negative. Mössbauer spectra showed two signals attributed to Sn2+ and Sn4+. Increasing alumina concentrations did not affect the isomer shift of Sn2+; however, they led to increasing quadrupole splitting, while in the case of Sn4+ both isomer shift and quadrupole splitting increased. A structural model is proposed which explains the effect of the composition on both the peak potentials and the Mössbauer parameters.  相似文献   

14.
The crystal growth kinetics of antimony trisulfide in (GeS2)0.1(Sb2S3)0.9 glass has been studied by microscopy and DSC. The linear crystal growth kinetics has been confirmed in the temperature range 492 ? T ? 515 K (EG = 405 ± 7 kJ mol−1). The applicability of standard growth models has been assessed. From the crystal growth rate corrected for viscosity plotted as a function of undercooling it has been found that the most probable mechanism is interface controlled 2D nucleated growth. The non-isothermal DSC data, corresponding to the bulk sample, can be described by the Johnson-Mehl-Avrami equation.  相似文献   

15.
Pb(PO3)2-TeO2 glasses in the whole range of glass composition were first obtained and their properties (refractive index, density, Tg and light scattering losses) were determined. Based on the vibrational spectroscopy data a new approach was applied to investigate the interactions of initial oxides in melts resulted in so-called constant stoichiometry groupings (CSGs) formation symbolizing intermediate range order in glasses. Vibrational spectra of glasses are interpreted as a superposition of unchangeable spectral forms (principal spectral components (PSCs)) belonging to CSGs: PbO · P2O5, TeO2 · 2PbO · 2P2O5, TeO2 · PbO · P2O5, TeO2, and possibly 2TeO2 · PbO · P2O5 and 6TeO2 · PbO · P2O5. In this work Multivariate Data Analysis has been applied as the independent mathematical tool to decompose Raman spectra of glasses and reveal the number of PSCs. It is shown that application of factor analysis results in the same five PSCs that confirms our data obtained from the CSG concept. This concept allows also the prediction of the existence of unknown compounds, and correspondingly some crystals (TeO2⋅ 2PbO⋅2P2O5 and others) were revealed by XRPD of the crystallized glasses. The CSG concept opens the way for elaboration of low scattering glasses as candidates for Raman amplifiers. It is shown that Pb(PO3)2-TeO2 glasses with small content of TeO2 are of interest to photonic technology.  相似文献   

16.
The atomic layer chemical vapor deposition (ALCVD) deposited Al2O3 and ZrO2 films were investigated by ex situ X-ray photoelectron spectroscopy. The thickness dependence of band gap and valence band alignment was determined for these two dielectric layers. For layers thicker than 0.9 nm (Al2O3) or 0.6 nm (ZrO2), the band gaps of the Al2O3 and ZrO2 films deposited by ALCVD are 6.7±0.2 and 5.6±0.2 eV, respectively. The valence band offsets at the Al2O3/Si and ZrO2/Si interface are determined to be 2.9±0.2 and 2.5±0.2 eV, respectively. Finally, the escape depths of Al 2p in Al2O3 and Zr 3p3 in ZrO2 are 2.7 and 2.0 nm, respectively.  相似文献   

17.
Crystallization was examined for glasses having chemical composition of 2(Ca,Sr,Ba)O-TiO2-2SiO2 in which the CaO/SrO/BaO molar ratio varied. Powdered glass samples were pelleted into disks and sintered at 950 °C for 2 h. The major phase precipitated in the sintered samples was (Ca,Sr,Ba)2TiSi2O8 and minor phase of perovskite such as CaTiO3 or SrTiO3 increased with CaO content in the samples containing more than 40 mol% of CaO in total CaO+SrO+BaO. Three regions having different slopes were found in linear relationships between SrO mol% and exothermal peak temperature on DSC curves or d[0 0 2] values determined by powder XRD method. These facts suggested that the major phase precipitated in each region was a solid solution containing a different amount of CaO, SrO, BaO and that these compositions varied depending on SrO content in the sample. The micro-crystalline structure, which could be useful in fabricating a dielectric dense body, was observed for samples containing 30-70 mol% of SrO.  相似文献   

18.
This paper describes the preparation and characterization of ZrO2 thin films deposited on silicon wafer by spin coating method. Nanocrystalline ZrO2 was synthesized by hydrothermal method using zirconium (IV)-n-propoxide as a precursor material. Surface of the ZrO2 particles was then modified with 2-acetoacetoxyethyl methacrylate used as a copolymer for coatings. The optical properties, nanostructure and surface morphology of the thin films prepared from surface modified ZrO2 nanoparticles were examined by optical spectroscopy, X-ray diffraction and scanning electron microscopy, respectively. It was found that the films deposited on silicon wafer have crystalline structure of monoclinic (111) at temperature of 150 °C. It was observed that films depict very dense material that does not present any granular or columnar structure. It was found that optical transparency of thin ZrO2 films distributed in the range of 30-40 percent in the spectral range 400-800 nm. Refractive index of ZrO2 films were determined as functions of ZrO2 content and it was found that the refractive index increases from 1.547 to 1.643 with increased ZrO2 content.  相似文献   

19.
Glasses with the mol% composition 4.9Na2O · 33.3CaO · 17.1Fe2O3 · 44.7B2O3 were melted, rapidly quenched using a twin roller technique, and subsequently tempered in the range from 550 to 620 °C. This led to the crystallization of magnetite with mean crystallite sizes in the 10-20 nm range. Using higher temperatures resulted in a larger quantity of formed crystallites and slightly larger mean crystallite sizes. Larger tempering times did not lead to substantial crystal growth. The time law of Ostwald ripening was not followed. This is explained by an increase in viscosity of the residual glassy phase during nucleation and crystal growth. Here, the smaller iron concentration near the crystals leads to higher viscosities and to the formation of a diffusional barrier around the crystals, which reduces further crystal growth. The crystallization stops, if Tg of the residual glassy phase is equal to the tempering temperature. Magnetite nano crystals with sizes in the 10-20 nm range offer a wide range of applications, such as the preparation of ferrofluids or of materials for medical diagnostics and therapy.  相似文献   

20.
Shengchun Li  B. Li  J.J. Wei 《Journal of Non》2010,356(43):2263-2267
(30 − x/2)Li2O·(70 − x/2)B2O3·xAl2O3(x = 0, 5 and 10) composite gels have been fabricated by the sol-gel method. LiOCH3, B(OC4H9)3, and Al(OC4H9)3 were used as precursor for Li2O, B2O3, and Al2O3, respectively. B(OC4H9)3 and Al(OC4H9)3 were hydrolyzed separately and then mixed. The crystallization behavior and structure of the gels upon thermal treatment temperatures between 150 and 550 °C are characterized on the basis of SEM, XRD and IR analyses. Xerogel with x = 0 exhibits non-crystal features, whereas crystalline phases are found in the xerogels with x = 5 and 10. The crystalline phases are not found with increasing heat treatment temperatures from 150 to 450 °C, but crystalline phases appear present at 550 °C. The xerogel with x = 0, subject to thermal treatment below 450 °C, is found to be still amorphous, and a 550 °C heat treatment leads its structure changing from glassy to crystalline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号