首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using X-ray diffraction and differential scanning calorimetry (DSC), the structure and the crystallization mechanism of Se0.8Te0.2 chalcogenide glass has been studied. The structure of the crystalline phase has been refined using the Rietveld technique. The crystal structure is hexagonal with lattice parameter a = 0.443 nm and c = 0.511 nm. The average crystallite size obtained using Scherrer equation is equal 16.2 nm, so it lies in the nano-range. From the radial distribution function, the short range order (SRO) of the amorphous phase has been discussed. The structure unit of the SRO is regular tetrahedron with (r2/r1) = 1.61. The Se0.8Te0.2 glassy sample obeys the chemical order network model, CONM. Some amorphous structural parameters have been deduced. The crystallization mechanism of the amorphous phase is one-dimensional growth. The calculated value of the glass transition activation energy (Eg) and the crystallization activation energy (Ec) are 159.8 ± 0.3 and 104.3 ± 0.51 kJ/mol, respectively.  相似文献   

2.
J. Rocca  M. Erazú  M. Fontana  B. Arcondo 《Journal of Non》2009,355(37-42):2068-2073
One of most important properties of some tellurium-based chalcogenide glasses is the optical and electrical switching between two states: the glass and the crystalline state. The understanding in these systems of the glass to crystal transition and its transformation kinetics is essential for their application in non-volatile memories. GeTeSb and GeTe amorphous samples of compositions close to the eutectic point Ge15Te85 were obtained by rapid solidification from the liquid state employing melt spinning technique. The glass forming ability of this system, for this cooling technique, is restricted to a small composition range nearby the binary eutectic. The crystallization kinetics of the samples was studied by means of differential scanning calorimetry (DSC) under both isothermal and continuous heating regimes. The quenched samples and the crystallization products have been characterized by X-ray diffraction with Cu(Kα) radiation. The crystallization temperature, activation energy, crystallization enthalpy and the dependence of these properties on concentration are reported. The crystallization study of Ge15Te85 glasses shows: a primary crystallization of Te superimposed with a secondary crystallization of GeTe. The addition of Sb (5 at.%) to the eutectic point Ge15Te85 modifies this behavior: the crystallization of Ge13Sb5Te82 glasses consists on the crystallization of Te and Ge2Sb2Te5. The crystallization of the ternary glasses was modeled.  相似文献   

3.
Bulk amorphous chalcogenide samples of Ge20Te80−xSex (x = 0, 1, 2, 8) have been prepared using a melting-quench method, and characterized by the differential scanning calorimetry, X-ray powder diffraction, high-resolution transmission electron microscopy, specific heat and thermal conductivity measurements. The low temperature specific heat measurements identified some localized low-frequency oscillation modes (Einstein modes) in conjunction with a Debye-like behavior. It was found that with increasing Se concentration the characteristic Debye temperature did not change whereas the Einstein temperature slightly decreased. The lattice thermal conductivity of all Ge20Te80−xSex samples exhibited typical amorphous heat conduction behavior, which has been discussed in connection with the phonon mean free path and in the context of a phenomenological model of heat conduction for highly disordered system.  相似文献   

4.
Bulk glasses of the system Ga20SbxS80−x (x = 5 and 40) were prepared for the first time by the known melt quenching technique. Non-isothermal differential scanning calorimetric (DSC) measurements of as-quenched Ga20SbxS80−x (x = 5 and 40) chalcogenide glasses reveal that the characteristic temperatures e.g. the glass transition temperature (Tg), the temperature corresponding to the maximum crystallization rate (Tp) recorded in the temperature range 400-650 K for x = 5 and 480-660 K for x = 40 are strongly dependent on heating rate and Sb content. Upon heating, these glasses show a single glass transition temperature (Tg) and double crystallization temperatures (Tp1 and Tp2) for x = 5 which overlapped and appear as a single crystallization peak (Tp) for x = 40. The activation energies of crystallization Ec were evaluated by three different methods. The crystallization data were examined in terms of recent analysis developed for non-isothermal conditions. The crystalline phases resulting from (DSC) have been identified using X-ray diffraction.  相似文献   

5.
I. Dyamant  E. Korin 《Journal of Non》2011,357(7):1690-1695
The non-isothermal crystallization kinetics of La2CaB10O19 (LCB) from a La2O3-CaO-B2O3 glass was studied. Differential thermal analysis methods were performed on three glass powders to obtain the kinetic parameters of LCB crystallization mechanism. The activation energies for overall crystallization (E), obtained by the methods of Kissinger and Ozawa, were in the range of 479-569 kJ/mol. Multiple (five) analysis methods were used to estimate the Avrami exponent (n), which could consequently be reduced into the single value of n = 3.1 ± 0.3. The growth morphology index (m) of LCB was corroborated by microscopy (optical and electron) images, which revealed a three dimensional growth. Energy dispersive spectroscopy confirmed that LCB is the crystallizing phase from the glass by an interface controlled mechanism. The parameters of the Johnson-Mehl-Avrami kinetic model for the analysis of LCB crystallization from glass were found to be n = m = 3.  相似文献   

6.
The kinetics of crystallization of Pb15Ge27Se58 was studied by differential scanning calorimetry non-isothermally. Various experimental methods are currently employed for determining the kinetic parameters of crystallization in a glassy system. These parameters include the activation energy of crystallization E (kJ/mol), the kinetic exponent n and the frequency factor Ko (s−1). Recently, a new method (VHR method) has been derived from Johnson-Mehl-Avrami (JMA) transformation rate equation to calculate - in sequence - the crystallization kinetic parameters of a glassy system. The VHR technique has been used to estimate the crystallization parameters of Pb15Ge27Se58 chalcogenide glass under non-isothermal conditions. The average value of E, n and Ko are found equal to 181.74 ± 0.58 (kJ/mol), 1.085 ± 0.023 and (9.196 ± 0.716) × 1012 (s−1), respectively. The kinetic exponent, n ≈ 1 indicates a surface nucleation mechanism.  相似文献   

7.
J.C. Qiao 《Journal of Non》2011,357(14):2590-2594
Crystallization transformation kinetics in isothermal and non-isothermal (continuous heating) modes were investigated in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). In isochronal heating process, activation energy for crystallization at different crystallized volume fraction is analyzed by Kissinger method. Average value for crystallization in Cu46Zr45Al7Y2 bulk metallic glass is 361 kJ/mol in isochronal process. Isothermal transformation kinetics was described by the Johnson-Mehl-Avrami (JMA) model. Avrami exponent n ranges from 2.4 to 2.8. The average value, around 2.5, indicates that crystallization mechanism is mainly three-dimensional diffusion-controlled. Activation energy is 484 kJ/mol in isothermal transformation for Cu46Zr45Al7Y2 bulk metallic glass. These different results were discussed using kinetic models. In addition, average activation energy of Cu46Zr45Al7Y2 bulk metallic glass calculated using Arrhenius equation is larger than the value calculated by the Kissinger method in non-isothermal conditions. The reason lies in the nucleation determinant in the non-isothermal mode, since crystallization begins at low temperature. Moreover, both nucleation and growth are involved with the same significance during isothermal crystallization. Therefore, the energy barrier in isothermal annealing mode is higher than that of isochronal conditions.  相似文献   

8.
We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around λ = 4 μm. The devices were made from alternating amorphous Ge25S75 and Ge15Te85 chalcogenide films with high transparency in the middle infrared region stacked in multilayers. Due to high thickness accuracy and periodicity of prepared multilayers we also observed second order photonic bandgaps at λ ~ 1.4 μm. The experimental data were in good agreement with theoretical predictions. The work focused on investigation of compositional homogeneity, surface roughness, thermal and optical properties of individual amorphous Ge25S75 and Ge15Te85 films. We confirmed chalcogenide materials as being of suitable choice for designing middle-infrared quarter wave stack devices. FT-IR reflectance spectra confirmed occurrence of 99.4% stopband near λ = 4 μm for fabricated reflector and narrow ~ 50% passband of prepared filter near λ = 3.934 μm.  相似文献   

9.
N. Baizura 《Journal of Non》2011,357(15):2810-2815
Tellurite 75TeO2-(10 − x)Nb2O5-15ZnO-(x)Er2O3; (x = 0.0-2.5 mol%) glass system with concurrent reduction of Nb2O5 and Er2O3 addition have been prepared by melt-quenching method. Elastic properties together with structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo-overlap technique at 5 MHz and Fourier Transform Infrared (FTIR) spectroscopy, respectively. Shear velocity, shear modulus, Young's modulus and Debye temperature were observed to initially decrease at x = 0.5 mol% but remained constant between x = 1.0 mol% to x = 2.0 mol%, before increasing back with Er2O3 addition at x = 2.5 mol%. The initial drop in shear velocity and related elastic moduli observed at x = 0.5 mol% were suggested to be due to weakening of glass network rigidity as a result of increase in non-bridging oxygen (NBO) ions as a consequence of Nb2O5 reduction. The near constant values of shear velocity, elastic moduli, Debye temperature, hardness and Poisson's ratio between x = 0.5 mol% to x = 2.0 mol% were suggested to be due to competition between bridging oxygen (BO) and NBO ions in the glass network as Er2O3 gradually compensated for Nb2O5. Further addition of Er2O3 (x > 2.0 mol%) seems to further reduce NBO leading to improved rigidity of the glass network causing a large increase of ultrasonic velocity (vL and vS) and related elastic moduli at x = 2.5 mol%. FTIR analysis on NbO6 octahedral, TeO4 trigonal bipyramid (tbp) and TeO3 trigonal pyramid (tp) absorption peaks confirmed the initial formation of NBO ions at x = 0.5 mol% followed by NBO/BO competition at x = 0.5-2.0 mol%. Appearance of ZnO4 tetrahedra and increase in intensity of TeO4 tbp absorption peaks at x = 2.0 mol% and x = 2.5 mol% indicate increase in formation of BO.  相似文献   

10.
11.
The crystalline samples of Ge4Sb4Te10, Ge4Sb4Te9, and Ge4Sb4Te8 were prepared and their amorphous semiconducting thin films obtained by flash evaporation. Their sheet resistance decreased slowly with temperature up to 147–160 °C with activation energy of electrical conductivity ΔE = 0.40–0.44 eV. Above these temperatures, the sheet resistance drops abruptly by several orders due to crystallization. The drop of resistivity proceeds in two steps. Two steps of phase change were also found on curves of DSC and on the temperature dependence of index of refraction. It pays for slow heating rates, crystallization induced by short (≈30 ns) laser pulses proceeds probably in one step only for all studied samples (as it follows from X-ray diffraction), not only for Ge2Sb2Te5 in which a single phase formation was confirmed. The crystallization temperatures are increasing slightly with decreasing Te content in the series Ge4Sb4Te10–Ge4Sb4Te9–Ge4Sb4Te8 from 147 to 160 °C. The X-ray diffractograms revealed that in laser crystallized samples can be found only cubic modification of Ge2Sb2Te5 type (a = 0.6 nm), while the samples annealed (230 °C, 2 h) or annealed after the crystallization with laser pulse, contain also small amounts of hexagonal phase.  相似文献   

12.
Pulok Pattanayak 《Journal of Non》2008,354(32):3824-3827
The composition dependence of different thermal parameters such as glass transition temperature, non-reversing enthalpy, thermal diffusivity etc., of bulk As45Te55−xIx chalcohalide glasses (3 ? x ? 10), has been evaluated using the temperature modulated Alternating Differential Scanning Calorimetry (ADSC) and Photo Thermal Deflection (PTD) studies. It is found that there is not much variation in the glass transition temperature of As45Te55−xIx glasses, even though there is a wide variation in the average coordination number . This observation has been understood on the basis that the variation in glass transition temperature of network glasses is dictated by the variation in average bond energy rather than . Further, it is found that both the non-reversing enthalpy (ΔHnr) and the thermal diffusivity (α) exhibit a sharp minimum at a composition x = 6. A broad hump is also seen in glass transition and crystallization temperatures in the composition range 5 ? x ? 7. The results obtained clearly indicate a sharp thermally reversing window in As45Te55−xIx chalcohalide glasses around the composition x = 6.  相似文献   

13.
The far-infrared spectra of Ge10Se90−xTex where x = 0, 10, 20, 30, 40, 50 glassy alloys were measured in the wavenumber region 50-650 cm−1 at room temperature. The results were explained in terms of the vibrations of the isolated molecular units. The addition of Te in Ge10Se90 has shown the appearance of GeTe2 and GeTe4 molecular units and vibrations of Se-Te bond as Se8−xTex mixed rings. The assignment of various absorption bands has been made on the basis of absorption spectra of pure Se, binary Ge-Se, Ge-Te, Se-Te and ternary Ge-Se-Te glassy alloys. The far-infrared transmission spectrum has been found to shift a little towards lower wavenumber side with the addition of Te content to Ge10Se90. The addition of Te to Ge-Se system replacing Se has found to reduce the Se-Se bonds and Ge-Se bonds and leads to the formation of Se-Te, Ge-Te and Te-Te bonds.  相似文献   

14.
Refractory bulk metallic glasses and bulk metallic glass composites are formed in quaternary Ni-Nb-Ta-Sn alloy system. Alloys of composition Ni60(Nb100−xTax)34Sn6 (x = 20, 40, 60, 80) alloys were prepared by injection-casting the molten alloys into copper molds. Glassy alloys are formed in the thickness of half mm strips. With thicker strips (e.g., 1 mm), Nb2O5 and Ni3Sn phases and the amorphous phase form an in situ composite. Glass transition temperatures, crystallization temperatures, and ΔTx, defined as Tx1 − Tg (Tx1: first crystallization temperature, Tg: glass transition temperature) of the alloys increase dramatically with increasing Ta contents. These refractory bulk amorphous alloys exhibit high Young’s modulus (155-170 GPa), shear modulus (56-63 GPa), and estimated yield strength (3-3.6 GPa).  相似文献   

15.
Shengchun Li  B. Li  J.J. Wei 《Journal of Non》2010,356(43):2263-2267
(30 − x/2)Li2O·(70 − x/2)B2O3·xAl2O3(x = 0, 5 and 10) composite gels have been fabricated by the sol-gel method. LiOCH3, B(OC4H9)3, and Al(OC4H9)3 were used as precursor for Li2O, B2O3, and Al2O3, respectively. B(OC4H9)3 and Al(OC4H9)3 were hydrolyzed separately and then mixed. The crystallization behavior and structure of the gels upon thermal treatment temperatures between 150 and 550 °C are characterized on the basis of SEM, XRD and IR analyses. Xerogel with x = 0 exhibits non-crystal features, whereas crystalline phases are found in the xerogels with x = 5 and 10. The crystalline phases are not found with increasing heat treatment temperatures from 150 to 450 °C, but crystalline phases appear present at 550 °C. The xerogel with x = 0, subject to thermal treatment below 450 °C, is found to be still amorphous, and a 550 °C heat treatment leads its structure changing from glassy to crystalline.  相似文献   

16.
The influence of outphase Cu50Ti50 amorphous alloy addition on microstructural evolution of Zr66.7Ni33.3 amorphous alloy has been investigated using a mechanical alloying method. It has been found that the milling induced microstructural evolution is related to the change of peak positions of the first maximum on X-ray diffraction patterns of the as-obtained amorphous alloys. With increasing milling time, the 3 wt.% Cu50Ti50 addition can give rise to the cyclic amorphization transformation of the as-milled alloy. The mechanical stability of the mixing amorphous phase can be greatly enhanced with increasing Cu50Ti50 addition up to 10 wt.%. Moreover, the addition of outphase Cu50Ti50 amorphous alloy not only increases the onset crystallization temperature of Zr66.7Ni33.3 amorphous alloy but also alters its crystallization mode. The effect of outphase amorphous addition on the mechanical stability of the Zr66.7Ni33.3 amorphous phase has been discussed based upon the bond order theory.  相似文献   

17.
N. Bayri  H. Gencer  M. Gunes 《Journal of Non》2009,355(1):12-2594
In this study, we have investigated the effect of substituting Mn for Fe on the crystallization kinetics of amorphous Fe73.5−xMnxCu1Nb3Si13.5B9 (x = 1, 3, 5, 7) alloys. The samples were annealed at 550 °C and 600 °C for 1 h under an argon atmosphere. The X-ray diffraction analyses showed only a crystalline peak belonging to the α-Fe(Si) phase, with the grain size ranging from 12.2 nm for x = 0 to 16.7 nm for x = 7. The activation energies of the alloys were calculated using Kissinger, Ozawa and Augis-Bennett models based on differential thermal analysis data. The Avrami exponent n was calculated from the Johnson-Mehl-Avrami equation. The activation energy increased up to x = 3, then decreased with increasing Mn content. The values of the Avrami exponent showed that the crystallization is typical diffusion-controlled three-dimensional growth at a constant nucleation rate.  相似文献   

18.
The influence of indium doping on the capacitance variation with temperature and applied bias voltage of Ge2Sb2Te5 is investigated. The capacitance-voltage (C-V) measurements of In0.3Ge2Sb2Te5 and Ge2Sb2Te5 thin films were performed for a sweep of voltages from −20 to +20 V at different temperatures. The results show different capacitance behavior of In0.3Ge2Sb2Te5 and Ge2Sb2Te5 films. As the temperature increases the capacitance of the indium-doped sample decreases and becomes negative. The negative capacitance effect might be attributed to a significant increase of the film’s conductivity due to temperature and applied bias voltage. The nonlinearity in the capacitance and conductivity could be related to the nucleation mechanism as the temperature becomes close to the amorphous-crystalline transition temperature.  相似文献   

19.
The optical properties of Cr3+ ions in lithium metasilicate (Li2O · SiO2) transparent glass-ceramics were investigated. The main crystalline phase precipitated was the lithium metasilicate (Li2O · SiO2) crystal. The percent crystallinity and crystalline size were ranging 65-75% and 20-35 nm, respectively. The color changes drastically to deep pink from emerald green upon crystallization. New and strong absorption bands appeared and the absorption intensity increases by about 10 times that in glass. These new absorption bands are found to be derived from Cr3+ ions in octahedral sites in the lithium metasilicate crystal lattice. Cr3+ ions substitute for three Li+ ions and occupy the distorted octahedral site between single [SiO4]n chains of lithium metasilicate crystal. The ligand field parameters can be estimated: 10Dq = 13 088 cm−1, B = 453 cm−1, Dq/B = 2.89 and C = 2036 cm−1. The near-infrared luminescence centered at 1250 nm was not detected in the deep pink glass-ceramics unlike emerald green glass.  相似文献   

20.
The thermal diffusivity (α) of As20Te80−xGax glasses (7.5 ? x ? 18.5) has been measured using photo-thermal deflection (PTD) technique. It is found that the thermal diffusivity is comparatively lower for As20Te80−xGax glasses, which is consistent with the memory type of electrical switching exhibited by these samples. Further, the thermal diffusivity of As20Te80−xGax glasses is found to increase with the incorporation of gallium initially (for x ? 9), which is consistent with the metallicity of the additive. This increase in α results in a maximum at the composition x = 9; beyond x = 9, a decrease is seen in α leading to a minimum at the composition x = 15. The observed composition dependence of thermal diffusivity of As20Te80−xGax glasses has been found to be similar to that of Al20AsxTe100−x glasses, based on which it is proposed that As20Te80−xGax glasses exhibit an extended stiffness transition with compositions x = 9 and x = 15 being its onset and completion, respectively. Also, the composition x = 17.5 at which a second maximum is seen in the thermal diffusivity has been identified to be the chemical threshold (CT) of the As20Te80−xGax glassy system, as at CT, the glass is configurationally closest to the crystalline state and the scattering of the diffusing thermal waves is minimal for the chemically ordered phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号