首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elastic recoil detection and Rutherford backscattering spectrometry combined with the nuclear reaction analysis method have been applied for the determination of oxygen, hydrogen and carbon concentration depth profiles of aged p+-type porous Si layers of different low and medium porosities. The plan view and cross-section scanning electron microscopy images have provided with information about both the diameter and silicon skeleton structure of the pores. The concentration depth profiles reveal the existence of a non-homogeneous subsurface porous film several hundred nanometers thick for all the studied samples. Differences in the atomic composition among low and medium porosity layers and the possible origin of various impurities are discussed. The maximum H content in PSi has been observed at the depth of 200–600 nm, while the highest oxygen concentration is typical of 200 nm thick subsurface layers. The highest obtained ratio of H/Si atomic concentrations reaches the value of 2 for the PSi samples with porosity P of 66%, comparing to NH/NSi = 0.27 in the case of P = 25% PSi.  相似文献   

2.
Koichi Awazu 《Journal of Non》2007,353(2):215-217
Amorphous SiO2 (a-SiO2) was formed by liquid-phase deposition (LPD) at room temperature. As a result of one shot of ArF excimer laser irradiation, LPD-formed a-SiO2 shows a threshold fluence for ablation of below than 200 mJ/cm2, which is much lower than the threshold fluence (∼1 J/cm2) of a-SiO2 formed by thermal oxidation of silicon. Raman scattering spectroscopy revealed that two sharp lines at 495 cm−1 and 606 cm−1, respectively, labeled D1 and D2, had disappeared, and the main band at 430 cm−1 was sharpened in LPD-formed a-SiO2. It is presumed that the fluorine broke the silica network, relaxing the Si-O-Si bond angle and dramatically reducing the threshold energy for ablation of a-SiO2.  相似文献   

3.
Thin film wide band gap p-type hydrogenated amorphous silicon (a-Si) oxide (p-a-SiOx:H) materials were prepared at 175 °C substrate temperature in a radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) and applied to the window layer of a-Si solar cell. We used nitrous oxide (N2O), hydrogen (H2), silane (SiH4), and diborane (B2H6) as source gases. Optical band gap of the 1% diborane doped films is in the range of 1.71 eV to 2.0 eV for films with increased oxygen content. Dark conductivity of these films is in the range of 8.7 × 10− 5 S/cm to 5.1 × 10− 7 S/cm. The fall in conductivity, that is nearly two orders of magnitude, for about 0.3 eV increase in the optical gap can be understood with the help of Arrhenius relation of conductivity and activation energy, and may not be significantly dependant on defects associated to oxygen incorporation. Defect density, estimated from spectroscopic ellipsometry data, is found to decrease for samples with higher oxygen content and wider optical gap. Few of these p-type samples were used to fabricate p-i-n type solar cells. Measured photo voltaic parameters of one of the cells are as follows, open circuit voltage (Voc) = 800 mV, short circuit current density (Jsc) = 16.3 mA/cm2, fill-factor (FF) = 72%, and photovoltaic conversion efficiency (η) = 9.4%, which may be due to improved band gap matching between p-a-SiOx:H and intrinsic layer. Jsc, FF and Voc of the cell can further be improved at optimized cell structure and with intrinsic layer having a lower number of defects.  相似文献   

4.
SnO2 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates at different substrate temperatures (500–800 °C) by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of the films have been investigated. The films deposited at 500 and 600 °C are epitaxial SnO2 films with orthorhombic columbite structure, and the HRTEM analysis shows a clear epitaxial relationship of columbite SnO2(1 0 0)||YSZ(1 0 0). The films deposited at 700 and 800 °C have mixed-phase structures of rutile and columbite SnO2. The carrier concentration of the films is in the range from 1.15×1019 to 2.68×1019 cm−3, and the resistivity is from 2.48×10−2 to 1.16×10−2 Ω cm. The absolute average transmittance of the films in the visible range exceeds 90%. The band gap of the obtained SnO2 films is about 3.75–3.87 eV.  相似文献   

5.
《Journal of Non》2006,352(9-20):1192-1195
We present a study of the photoluminescence (PL) of structures of Si nanocrystals (nc-Si) in erbium-doped amorphous silicon dioxide. It is shown that the energy of excitons confined in nc-Si of 2–5 nm sizes is efficiently transferred to Er3+ ions in surrounding SiO2 and a strong PL line at 1.5 μm appears. At high excitation intensity the population inversion of Er3+ ion states is achieved. These results demonstrate good perspectives of Er-doped nc-Si/SiO2 structures for possible applications in Si-based optical amplifiers and lasers.  相似文献   

6.
Ultrathin La2O3 gate dielectric films were prepared on Si substrate by ion assistant electron-beam evaporation. The growth processing, interfacial structure and electrical properties were investigated by various techniques. From XRD results, we found that the La2O3 films maintained the amorphous state up to a high annealing temperature of 900 °C for 5 min. From XPS results, we also discovered that the La atoms of the La2O3 films did not react with silicon substrate to form any La-compound at the interfacial layer. However, a SiO2 interfacial layer was formed by the diffusion of O atoms of the La2O3 films to the silicon substrate. From the atomic force microscopy image, we disclosed that the surface of the amorphous La2O3 film was very flat. Moreover, the La2O3 film showed a dielectric constant of 15.5 at 1 MHz, and the leakage current density of the La2O3 film was 7.56 × 10−6 A/cm2 at a gate bias voltage of 1 V.  相似文献   

7.
Nanostructured p‐type and n‐type porous silicon samples were prepared for (100) and (111) orientations and a systematic study is carried out on the effects of orientations, dopant type (boron and phosphorous), current density (20 and 30mA/cm2) and etching time on the formation, optical and thermal properties by photoacoustic spectroscopy. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Rahul Pal 《Journal of Non》2009,355(1):76-78
An acidic silica sol (35 ± 2 wt% equivalent SiO2) having a gelling time of 9-10 min has been used as an aqueous phase for obtaining a w/o emulsion in CCl4 as oil phase in presence of a surfactant, Tween 80. The silica sol was allowed to form gel at room temperature via polycondensation among the -Si-OH groups forming the porous silica gel microspheres. The surface area of the microspheres heated at 500°, 700° and 900 °C was found to be 227 m2/g, 167 m2/g and 81 m2/g indicating the gradual densification. The decreased surface area and unchanged -Si-O-Si- asymmetric stretching vibration at 1084 cm−1 up to 700 °C probably indicate the formation of extensive cross-linked gel structure in the microsphere. The appearance of the -Si-O-Si- asymmetric stretching vibration at 1104 cm−1 and the absence of porosity while heating at 1000 °C indicate the formation of dense silica glass microspheres.  相似文献   

9.
Nonpolar (1 1 2¯ 0) and semipolar (1 1 2¯ 2) GaN films were grown on sapphire by metalorganic vapour phase epitaxy using ScN interlayers of varying thicknesses. A 5 nm interlayer reduced basal plane stacking fault (BSF) densities in nonpolar films by a factor of 2 and threading dislocation (TD) densities by a factor of 100 to (1.8±0.2)×109 cm−2. An 8.5 nm interlayer reduced BSF densities in semipolar films by a factor of 5 and reduced TD densities by a factor of 200 to (1.5±0.3)×108 cm−2. Nonpolar film surface roughnesses were reduced by a factor of 20.  相似文献   

10.
In previous years there has been great interest in new materials for photonic devices operating at infrared (IR) and visible (VIS) regions. We report here near infrared and blue cooperative luminescence properties for Yb3+-doped GeO2-PbO glasses. Luminescence and lifetime measurements in the VIS and near-IR regions were performed to investigate the spectroscopic characteristics of the glasses. Intense emissions around 507 and 1010 nm were observed using 980 and 808 nm excitation, respectively. The VIS lifetimes (∼0.4 ms) are about half of their respective near infrared ones (∼0.8 ms), as expected for materials in which the VIS emission is caused by the cooperative effect. Regarding the IR emission, the glasses exhibited a high absorption cross-section (1.2 × 10−20 cm2) at 978 nm and an emission cross-section of 0.6 × 10−20 cm2, at 1010 nm, with a minimum pump intensity of 2.8 kW/cm2. These results suggest this glass composition as a potential material to be used in devices operating in the VIS and IR spectral range, such as 3-D displays and infrared lasers.  相似文献   

11.
Porous silicon film (PSF) was formed by anodic reaction in aqueous hydrofluoric acid (HF) in the range 2 ? n < 4, n being the average number of electrons flowing through the external circuit per atom of silicon dissolved. Electron diffraction pattern of as-grown PSF changes to a very broad Kikuchi pattern from a sharp Kikuchi pattern for smaller values of n. The disproportionation reactions occur at a local point of the silicon surface for n between 2 and 4. When n is nearly equal to 2, the PSF structure changes to be amorphous and the reactions occur over the entire area of the silicon surface. The oxidation of PSF proceeds with the increase of the absorption intensities of three Si-O bands at 1070, 455, and 800 cm-1 below 600°C, and two Si-O bands which are 455 and 800 cm-1 above 600°C. Activation energies of Si-O bands at 1070, 455, and 800 cm-1 at oxidation below 600°C are 0.1, 0.3, and 0.6 eV respectively. The activation energy changes remarkably below and above 600°C. The oxygen distributions in oxidized porous silicon of p-type and n-type PSF are uniform and nonuniform respectively in the thickness direction.  相似文献   

12.
A multilayered porous structure formed as a result of the anodization of a Si(111)(Sb) substrate in an HF:C2H5OH (1: 2) solution with a periodically alternating current has been investigated by high-resolution X-ray diffraction. It is established that, despite 50% porosity, a thickness of 30 μm, and significant strain (4 × 10−3), the porous silicon structure consists mainly of coherent crystallites. A model of coherent scattering from a multilayered periodic porous structure is proposed within the dynamic theory of diffraction. It is shown that the presence of gradient strains of 5 × 10−4 or higher leads to phase loss upon scattering from porous superlattices and the suppression of characteristic satellites in rocking curves.  相似文献   

13.
T. Fu  Y.G. Shen  Z.F. Zhou 《Journal of Non》2008,354(27):3235-3240
Amorphous carbon nitride (CNx) films with silicon addition up to 16 at.% are sputter deposited on Si(1 0 0) substrate, and the surface morphology is studied with scaling method based on atomic force microscopy. The surface roughness σ, the roughness exponent α, and the lateral correlation length ξ decrease with silicon content of the films, reaching 0.33 nm, 0.80 and 50 nm, respectively, for the film with [Si] = 16 at.%. The addition of silicon in the films leads to additional Si-N, Si-C-N and CN bonds revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The films undergo a structural transition from columnar to smooth morphology in cross-section with silicon addition demonstrated by field emission scanning electron microscopy. Nano-sized clusters sparsely dispersed in amorphous matrix of the film with [Si] = 16 at.% are observed by high-resolution transmission microscopy. According to the surface growth mechanism in which surface diffusion and geometrical shadowing drive structural and morphological evolution of the sputter deposited films, surface smoothing of the amorphous CNx films by silicon addition is explained by the formation of Si-N and Si-C-N bonds that impede surface diffusion of the adsorbed species during film growth, which leads to the reduced size of the columnar structures.  相似文献   

14.
We report improvement in characteristics of hydrogenated amorphous silicon (a-Si:H ) p-i-n structured solar cells by high-pressure H2O vapor heat treatment. a-Si:H p-i-n solar cells were formed on glass substrates coated with textured SnO2 layer. P-, i-, and n-type a-Si:H layers were subsequently formed by plasma enhanced chemical vapor deposition. Finally an indium-tin-oxide layer was coated on the n-type a-Si:H surface. Heat treatment at 210 °C with 2 × 105 Pa H2O vapor for 1 h was applied to the a-Si:H p-i-n solar cells. Electrical characteristics were measured when samples were kept in dark and illuminated with light of AM 1.5 at 100 mW/cm2. The heat treatment with H2O vapor increased fill factor (FF) and the conversion efficiency from 0.54 and 7.7% (initial) to 0.57 and 8.4%, respectively. Marked improvement in solar cell characteristics was also observed in the case of a poor a-Si:H p-i-n solar cell. FF and the conversion efficiency were increased from 0.29 and 3.2% (initial) to 0.56 and 7.7%, respectively.  相似文献   

15.
《Journal of Non》2006,352(28-29):3041-3046
We search for the presence of stimulated emission in samples of porous silicon embedded in the sol–gel derived SiO2 matrix. By modifying the etching conditions of the porous silicon using hydrogen peroxide, we decrease substantially the nanocrystal size and produce a significant blue shift of the PL emission. Femtosecond variable-stripe length experiments combined with the shifting-excited spot technique demonstrates positive optical gain (modal gain ∼25 cm−1) in the range 550–730 nm. Ultrafast photoluminescence dynamics indicates the origin of the stimulated emission as possibly due to recombination of excitonic states inside silicon nanocrystals.  相似文献   

16.
Optical properties of Er3+-doped ZBLAN glass matrix have been studied by luminescence spectroscopy under 488 nm excitation. The spectrum of the 4S3/24I15/2 transition, carried out at temperature T = 2 K, shows a new line in the lowest energy region. This new line, centered at 17 996 cm−1, was attributed to the lower transition between the Stark components of the 4S3/24I15/2 transition. Measurements from T = 2 K to room temperature show the disappearance of this new line. From the results we estimate the splitting of 415 cm−1 for the ground state and 100 cm−1 for the 4S3/2 excited multiplet. The experimental result allows us to assign the positions of the eight Stark components of the ground state multiplet of the Er3+ in the ZBLAN glass matrix.  相似文献   

17.
Solid state 1H, 29Si and 31P MAS NMR have been used to investigate the microstructure of phosphosilicate gels prepared by a modified sol-gel method involving hydrolysis of silicon precursors in a solely aqueous environment at 50 °C. Gels with molar compositions 5, 10, 20 and 30 mol% P2O5 in P2O5-SiO2 were studied. After drying to 400 °C the gels have very similar structures formed by a siloxane framework containing silanol groups and trapped molecules of orthophosphoric acid together with a very small amount, of pyrophosphoric acid. Unlike the gel samples previously synthesized by the hydrolysis of the silicon precursor in alcoholic solution at room temperature, the co-polymerization of phosphorus and silicon is much reduced. Although co-polymerization increases with phosphorus content, it still represents less than 50% of the phosphorus in the 30 mol% P2O5 gel. Furthermore there is no evidence for six-coordinated silicon in the glassy matrix.  相似文献   

18.
Fe-doped nanosized SnO2 powders were prepared by chemical co-precipitation technique using SnCl4 and FeCl3 as starting materials and water as a carrier. Experimental results show that the grain size of Fe-doped SnO2 crystallites is smaller than 5 nm, and the particle size is smaller than 15 nm. When the calcination temperature is below 650 °C, the SnO2 crystal has tetragonal lattice structure. At higher temperature the particles become a two-phase mixture of tetragonal SnO2 and hexagonal Fe2O3 crystallites. Fe doping can obviously prevent the growth of nanosized SnO2 crystallites, and a higher Fe-doping concentration is more effective to prevent the growth of nanosized SnO2 particles when the calcination temperature is below 550 °C.  相似文献   

19.
C.H. Hsu  Y.P. Lin  H.J. Hsu  C.C. Tsai 《Journal of Non》2012,358(17):2324-2326
We employed the low temperature hydrogenated amorphous silicon nitride (a-SiNx:H) prepared by plasma-enhanced chemical vapor deposition as a refractive index (n) matching layers in a silicon-based thin-film solar cell between glass (n = 1.5) and the transparent conducting oxide (n = 2). By varying the stoichiometry, refractive index and thickness of the a-SiNx:H layers, we enhanced the spectral response and efficiency of the hydrogenated amorphous silicon thin-film solar cells. The refractive index of a-SiNx:H was reduced from 2.32 to 1.78. Optimizing the a-SiNx:H thickness to 80 nm increased the JSC from 8.3 to 9.8 mA/cm2 and the corresponding cell efficiency increased from 4.5 to 5.3%, as compared to the cell without the a-SiNx:H index-matching layer on planar substrate. The a-SiNx:H layers with graded refractive indices were effective for enhancing the cell performance.  相似文献   

20.
Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50–200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H2 and NH3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×108 cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号