首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 11 毫秒
1.
The structure factors of Mg2SiO4 glass have been measured using high energy x-ray diffraction up to pressures of 30.2 GPa, and the equation of state measured up to 12.8 GPa. The average Mg-O coordination numbers were extracted from the experimental pair distribution functions assuming two cases (i) there is no change in Si-O coordination number with pressure and (ii) the average Si-O coordination number increases the same as for pure SiO2 glass. Both analyses give similar results and show a gradual increase in the average Mg-O coordination number from 5.0 at ambient pressure to ~ 6.6(6) at 30.2 GPa. There is good qualitative agreement between the experimental structure and equation of state data for the glass compared to several recent molecular dynamics simulations carried out on liquid Mg2SiO4.  相似文献   

2.
Pavel Hrma  José Marcial 《Journal of Non》2011,357(15):2954-2959
During glass-batch melting, solid silica (quartz) usually dissolves last. The measured rate of dissolution, while the temperature was increasing at a constant rate, was compared with the hypothetical diffusion-controlled volume flux from regularly distributed particles through concentration layers of a uniform thickness. The actual rate was up to two orders of magnitude lower than that of the “ideal” case, revealing a progressive inhibition of silica dissolution. As a measure of this retarded dissolution, we introduced a retardation factor defined as a ratio of the actual and “ideal” dissolution rates measured as the volume flux at the melt-particle interface. The severe inhibition of silica dissolution has been attributed to the irregular spatial distribution of silica particles that is associated with the formation of nearly saturated melt on a portion of their surfaces. Irregular shapes and unequal sizes of particles also contribute to their extended lifetime.  相似文献   

3.
Masato Noguchi 《Journal of Non》2011,357(15):2966-2969
Copper nanoparticles were formed by photoirradiation of doped sol-gel silica, which was prepared by mixing Cu2+ ions, ethylenediaminetetraacetic acid (EDTA), and riboflavin into sol-gel solutions of tetramethoxysilane. The doped silica exhibited broad absorption bands at 442 nm due to riboflavin and 740 nm due to Cu2+-EDTA complexes. After photoirradiation, the sol-gel silica showed a reddish brown color and the absorption peak around 580 nm due to the plasmon band of copper nanoparticles. Copper nanoparticles were also formed from other sol-gel silica doped with lumichrome or lumiflavin. The photostability of the flavins dyes obtained from the fluorescence intensities was in the order of lumichrome > lumiflavin > riboflavin in the sol-gel silica without Cu2+ ions. On the other hand, the fluorescence intensities were considerably reduced by photoirradiation of the sol-gel silica doped with Cu2+ ions, irrespective of the flavin dyes doped. Considering the absorption and fluorescence spectral changes during the photoirradiation, we concluded that copper nanoparticles are produced by the photoinduced electron transfer from the flavin dyes in the sol-gel silica.  相似文献   

4.
Si-Al-Y-O glasses and glass-ceramics were prepared via melt-casting by combustion synthesis under high gravity. The phase assemblage and microstructure of the cast products strongly depended on the content of SiO2 and the additive ZrO2 or La2O3 in the starting compositions. With increasing content of SiO2, the glass-forming ability of the melt was enhanced. The additive ZrO2 was not dissolved into the glass and inclined to crystallize, but La2O3 was inclined to remain in the glass matrix instead of precipitation. With a short processing period and lower energy consumption, combustion synthesis under high gravity can offer a new approach to fast fabrication of glass and glass-ceramic materials.  相似文献   

5.
Surfactant-templated mesoporous silica aerogels (or nanofoams) with their entire skeletal framework nanoencapsulated conformally by a thin polyurea layer are emerging as materials with high specific strength and high energy absorption. In this paper a modified split Hopkinson pressure bar was used to investigate their mechanical behavior under dynamic compression at high strain rates. The evolution of the mesoporous structure under such dynamic impact conditions was simulated using the Material Point Method (MPM). The material point model was generated from X-ray micro-computed tomography whereas each voxel was converted to a material point corresponding to the local skeletal density of the material. Simulation results agree well with the experimental data, indicating that the MPM can effectively model the compression of complex mesoporous structures. Simulations indicate a nearly uniform deformation at all three stages of compression: the elastic region, compaction and the final densification due to the low ratio of pore size to wall thickness and random distribution of the pores. Simulations have also indentified the function of the conformal polymer coating as a reinforcing factor, showing that different porosities, obtained by varying the skeletal wall thickness, affect the local stress distribution. Eventually, simulations confirm that the stress-strain behavior of aerogels under compression follows a power-law relationship with the initial bulk density, consistent with experimental results.  相似文献   

6.
K. Ramesh   《Journal of Non》2009,355(37-42):2045-2049
In Ge–As–Te system, the glass forming region determined by normal melt quenching method has two regions (GFR I and GFR II) separated by few compositions gap. With a simple laboratory built twin roller apparatus, we have succeeded in preparing Ge7.5AsxTe92.5−x glasses over extended composition ranges. A distinct change in Tg is observed at x = 40, exactly at which the separation of the glass forming regions occur indicating the changes in the connectivity and the rigidity of the structural network. The maximum observed in glass transition (Tg) at x = 55 corresponding to the average coordination number (Zav) = 2.70 is an evidence for the shift of the rigidity percolation threshold (RPT) from Zav = 2.40 as predicted by the recent theories. The glass forming tendency (Kgl) and ΔT (=TcTg) is low for the glasses in the GFR I and high for the glasses in the GFR II.  相似文献   

7.
The analysis of crystallization statistics has been modified to allow for time-dependent (transient) nucleation. To establish its accuracy, the numerical analysis has been applied to isothermal crystallization kinetics and shown to yield crystallization versus time curves which compare very closely with curves calculated analytically with or without the inclusion of transient nucleation.The numerical analysis including transient has been used to calculate the critical cooling rates for glass formation in anorthite and o-terphenyl considering (1) only homogeneous nucleation and (2) homogeneous nucleation + heterogeneous nucleation for 107 heterogeneities cm?3 with contact angles between 40° and 100°. It has been shown that inclusion of time-dependent nucleation in the calculations does not change the critical cooling rates for glass formation calculated assuming steady-state homogeneous nucleation in both materials. The critical cooling rate in anorthite calculated including steady-state heterogeneous nucleation was found to be decreased only slightly by the inclusion of time-dependent nucleation; while the critical cooling rates calculated for o-terphenyl were not change at all by the inclusion of time-dependent nncleation.The lack of an effect of time-dependent nucleation on the critical cooling rates calculated assuming only homogeneous nucleation is explained by the relatively small transient times on the high temperature side of the nucleation peak (a temperature range which has an overwhelming effect on the overall crystallization process because of the relatively high crystal growth rates in this range).Although the critical cooling rates associated with heterogeneous nucleation are large, the nucleation here takes place at relatively small undercooling where the transient times are relatively small. Thus, transient nucleation causes only a temporary delay in the over all crystallization, and its effect on the critical cooling rate is small.  相似文献   

8.
To hinder the phenomenon of weathering of ancient stained glass, the present work proposes the application of sol–gel coatings to the glass surface. Previous investigations [1], [2], [3], [4], [5] and [6], in fact, show that sol–gel silica coatings do not change the appearance of artistic glasses when deposited on their surface. Moreover, the film thickness is so small (around 200 nm) and its composition and structure so compatible with that of the original glass, that the characteristics of the coating and original glass are not distinguishable. In this work, several recipes used to produce sol–gel coatings have been tested in order to understand their behavior when adopted for covering ancient weathered glass. The coatings are made of sol–gel silica prepared with two different catalysts: H+, Pb2+ and without catalyst. All the investigated samples show a good adhesion of the coating to the glasses used to simulate the behavior of ancient artefacts. The sol–gel silica coatings have been studied before and after accelerated ageing to test the resistance of the protective coatings to weathering. Another important index to test of the efficiency of the sol–gel coatings for the protection of an ancient glass is the lead ion mobility. In ancient stained glass, in fact, this element is present in the metallic lead network, in the grisaille paintings and constitutes a main component of many glass tesserae. The action of water on this highly mobile ion involves the degradation of the glass itself and the release of the ion in the rain solution. Ageing tests show the efficiency of H+ and Pb2+ catalyzed coatings and the inefficiency of the non-catalyzed sol–gel layers.  相似文献   

9.
J.-W. Lee  R.K. MacCrone 《Journal of Non》2008,354(29):3510-3512
It was found, using electron paramagnetic resonance (EPR), that the signal of E′ centers in silica glass totally disappeared following a 1 h heat-treatment at 1000 °C under hydrogen atmosphere. However, by subsequent heat-treatment at the same temperature under a dry nitrogen atmosphere, some of the E′ centers re-appeared.  相似文献   

10.
The influence of significant fraction (10–50 mole%) indium in liquid gallium on GaN crystallization from a ternary Ga–In–N solution was analyzed. Crystallization experiments of GaN on GaN-sapphire templates from Ga–In solutions, at 1350–1450 °C, with prior to the growth seed wetting at 1500 °C, and 1.0 GPa N2 pressure, without solid GaN source showed faster growth of GaN on the seed (by a factor of 1.5–2) than using pure gallium solvent. Nevertheless the new grown crystals were morphologically unstable. The instability was reduced by decrease of the wetting temperature down to 1100 °C or by omitting the wetting procedure entirely, which indicated that GaN dissolves much faster in Ga–In melt than in pure Ga and that the unstable growth was caused most likely by complete dissolution of GaN template before the growth. It was observed that the crystals grown on bulk GaN substrates did not show morphological instability observed for GaN-sapphire templates. The influence of indium on thermodynamic and thermal properties of the investigated system is discussed.  相似文献   

11.
Silica aerogels were synthesized from the industrial fly ash by ambient pressure drying method. The process consists of two stages, preparation of sodium silicate solution from fly ash by hydrothermal reaction with sodium hydroxide, and synthesis of porous silica aerogels from the obtained sodium silicate solution. Silica wet gels were formed by vitriol-catalysis or resin-exchange-alkali-catalysis of the obtained sodium silicate solution. The trimethylchlorosilane(TMCS)/ethanol(EtOH)/hexane mixed solution was used for solvent exchange/surface modification of the wet gel so as to obtain porous silica aerogels via ambient pressure drying. The results indicated that the synthesized silica aerogels were lightweight and hydrophobic. The BET specific surface area, pore volume and average pore diameter were 362.2-907.9 m2 g− 1, 0.738-4.875 cm3 g− 1, and 7.69-24.09 nm respectively. Particularly, the synthesized silica aerogels by resin-exchange-alkali-catalysis method showed uniform mesoporous structure, and had much higher specific surface area (907.9 m2 g− 1) and pore volume (4.875 cm3 g− 1) than that of by vitriol-catalysis process.  相似文献   

12.
An organic phosphate species tributyl phosphate (TBP) was incorporated into sol–gel-derived glass matrix. TBP could be directly added to the hydrolyzed silica source from tetraethylorthosilicate (TEOS) and immobilized in silica glass matrix. TBP was stably immobilized in silica glass matrix even in the case where the weight ratio of TBP to silica was unity, and where the volume fraction of the glass sample occupied by TBP moiety was as large as 69%. The glass sample showed an appearance of hard glassy solid even at such a large fraction of TBP which is an organic solvent in the neat state at room temperature. The FT-IR spectrum showed that TBP was immobilized in silica glass in an intact state without chemical bonding with the siloxane network. The Vickers hardness was large enough even at higher weight ratios of TBP to silica to be measured as data indicating that the immobilized TBP molecules could play a promotive role in forming the siloxane bonding. The wide-angle X-ray scattering experiments revealed that the siloxane bonding was expanded by TBP molecules entrapped in the siloxane network. Furthermore, TBP molecules are dispersed in the siloxane network in the molecular scale.  相似文献   

13.
In the present work, mesoporous silica nanoparticles (MSNs) with well-ordered hexagonal structure were synthesized using Sodium Carboxy Methyl Cellulose. The MSNs were characterized by scanning electron microscopy, dynamic light scattering, powder XRD, nitrogen physisorption and Transmission electron microscopy. The MSNs were also functionalized with thiol groups and its capacity toward adsorption of a large cation, i.e. lead was investigated. Scanning electron microscopy reveals that MSNs have semi-spherical shapes. The XRD pattern of the calcined sample shows at least five well-defined peaks which point out that silicate nanoparticles have hexagonal array of pores as MCM-41 structure. The nitrogen adsorption isotherm displays a type IV isotherm according to the IUPAC classification. A sharp inflection in capillary condensation/evaporation step specifies that well-ordered MCM-41 nanoparticles were synthesized. TEM image shows the well-ordered hexagonal structure of MSNs. The adsorption capacity of functionalized MSNs was higher than functionalized MCM-41 in which one reason for such behavior might be explained by higher accessibility of pores of functionalized MSNs. This approach was carried out using relatively low-cost and nonhazardous reactants in concentrated reaction medium and also the yield of this approach was high up to 96% by weight.  相似文献   

14.
J.-W. Lee  R.K. MacCrone 《Journal of Non》2008,354(14):1509-1515
It was discovered that E′ centers were created by heat-treatment when silica glass contains water and has residual stress. Silica glass samples were heat-treated at 1000 °C for various lengths of time in 355 torr (47 000 Pa) water vapor pressure and dry nitrogen gas atmospheres. The electron paramagnetic resonance (EPR) signal of E′ centers increased initially with heat-treatment time in both atmospheres but then decreased afterwards in the wet atmosphere. It is known that water molecules eliminate paramagnetic defects, such as E′ centers and non-bridging oxygen hole centers (NBOHCs) by reacting with these defects in the glass, transforming them to non-paramagnetic species such as Si-OH or Si-H. The present study indicates that water molecules are also capable of initially creating paramagnetic defects in the glass structure by breaking the silica network structure in the presence of stress. The present observation may be relevant to mechanical strength reduction of silica glasses, which is commonly observed in the presence of water and stress.  相似文献   

15.
W.K. An  A.H. Cai  J.H. Li  Y. Luo  T.L. Li  X. Xiong  Y. Liu  Y. Pan 《Journal of Non》2009,355(34-36):1703-1706
Glass forming ability (GFA) and non-isothermal crystallization kinetics of Zr62.5Al12.1Cu7.95Ni17.45 bulk metallic glass were investigated. Its critical dimension is up to 7.5 mm and its critical cooling rate is less than 40 K s−1, indicating its better GFA. It manifests two crystallization procedures and the second crystallization peak is more sensitive to heating rate than the first crystallization peak. The glass transition and crystallization both have remarkable kinetics effects. The apparent activation energies derived from the Kissinger plots are 175.24 ± 27.59 KJ mol−1 for glass transition Eg, 212.84 ± 15.84 KJ mol−1 for onset crystallization Ex, 230.51 ± 23.85 KJ mol−1 for the first crystallization peak Ep1 and 124.85 ± 15.15 KJ mol−1 for the second crystallization peak Ep2.  相似文献   

16.
We have produced silica-gel compacts doped with 2,5-Bis(benzoxazol-2-yl)-4-methoxyphenol dye using high-pressure processing of powders synthesized by the sol-gel technique. The high-pressure compaction of powders with three different dye concentrations was done at 4.5 GPa and room temperature. We have measured optical and mechanical properties of the obtained compacts. They were very stable, transparent, crack free, hard (3.56 ± 0.07 GPa) and dense (1.95 ± 0.03 g/cm3), being resistant to polishing and leaching, which enables its use in optical applications. The Stokes shift observed was higher than 100 nm indicating that the intramolecular proton-transfer in the electronically excited state (ESIPT) of this dye is maintained, even in an OH rich environment like silica. A shift to higher wavelength in the fluorescence spectra of the compacts, attributed to the increasing in the conjugation of the π system, was observed.  相似文献   

17.
Nano-meter sized structural inhomogeneities of (CuI)0.52-(Cu2MoO4)0.48 superionic conducting glass were investigated by high resolution transmission electron microscopy. The as-quenched sample of CuI-Cu2MoO4 is a homogeneous glass, in which the CuI component is finely and uniformly dispersed among the oxyanions of Cu2MoO4 glassy matrix. A two-step crystallization, starting at 440 and 495 K, was observed in the glass. After the first step crystallization, precipitating nano-crystalline cubic CuI 2-3 nm in diameter, the electrical conductivity increases by about 50%. On the other hand, the electrical conductivity decreases with the second crystallization event forming crystalline phases of CuI, Cu2O and others 20-30 nm in diameter.  相似文献   

18.
S. Basu  H. Jain 《Journal of Non》2008,354(28):3278-3283
We have explored the development of multifunctionalities viz, optical nonlinearity, high dielectric constant and ferromagnetic behavior in a nanostructured silica based glass of 14.0Na2O, 26.0BaO, 26.0TiO2, 16.0B2O3, 17.0SiO2, 1.0NiO (mol%) composition. A heat treatment at 863 K for 4 h led to nonlinear refractive index and absorption coefficients at wavelength 800 nm of 0.11 × 10−19 m2/W and 1.15 × 10−3 cm/GW, respectively. A heat treatment at 1073 K for 2 h followed by 1113 K for 3 h increased the dielectric constant from 11 to 50, apparently due to the formation of nanocrystals of BaTiO3 within the glass medium. Glass samples reduced at 923 K for 1 h exhibited ferromagnetic behavior due to the presence of nickel nanoparticles.  相似文献   

19.
Copper iron oxides, Cu1‐xFe2+xO4 (0 ≤ x ≤ 0.5), have been synthesized by thermal oxidation of copper ‐ iron mixtures. In this process, the phase formation and the phase stability were investigated as function of the temperature (800°C – 1200°C) and the oxygen partial pressure (1.013 x 101 – 1.013 x 105 Pa). The phase formation starts with the reaction of the metallic components to simple oxides (Fe3O4, Fe2O3, CuO). From these simple oxides, the formation of complex oxides requires a minimum temperature of 800°C. The synthesis of single phase spinel compounds Cu2+1‐2x Cu1+xFe2+xO4±δ is realized for 0.1 ≤ x ≤ 0.5, using specific temperature – p(O2) – conditions for a given value of x. Remarkably, to achieve our goal, we found that the increase of x implies that of the reaction temperature and/or a decrease of the p(O2) in the reaction gas stream. Besides, a single phase spinel CuFe2O4 does not exist in the temperature / p(O2)‐field investigated. Using the results of XRD ‐ phase analysis, T ‐ p(O2) – x – diagrams were constructed. These diagrams allow the prediction of phase compositions expected for different synthesis conditions. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号