首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
D. Meng 《Journal of Non》2011,357(7):1787-1790
Ta-based bulk metallic glasses with high strength (2.7 GPa) and hardness (9.7 GPa), high elastic modulus (170 GPa) and high density (12.98 g/mm3) were developed. The best glass forming ability so far for a Ta-Ni-Co system reaches a critical diameter of 2 mm by the copper mold casting method. It shows an exceptionally high glass transition temperature of 983 K and a high crystallization temperature up to 1023 K. The unique mechanical and physical properties make them a promising high strength material.  相似文献   

2.
We report on the discovery of a new solid, presumably amorphous n-butanol at ambient pressure. According to the literature data the melting point Tm of n-butanol is 183 K and the glass transition temperature Tg is 118 K. If kept isothermally at a fixed temperature between 130 and 160 K, the supercooled liquid n-butanol undergoes remarkable phase transformations to a solid phase. The new phase converts to liquid at a temperature of about 170 K. It is presumably amorphous because foreign substances dissolved in liquid n-butanol keep the same state in this new phase of butanol. The kinetics of free radical oxidation by dissolved oxygen in both solid amorphous phases is investigated in detail.  相似文献   

3.
CuZr as well as CoZr are well known metallic glass-formers in a wide compositional range. Since the binary Cu-Co system exhibits a metastable liquid-liquid miscibility gap, i.e. Cu and Co tend to separate from each other, the ternary Cu-Co-Zr system is a promising candidate to form phase separated glass-glass composites. In this work (Cu60Co40)1 − xZrx metallic glasses with relatively low Zr contents of x = 37 and x = 32 were prepared by melt spinning and investigated by in-situ small-angle and wide-angle X-ray scattering (SAXS/WAXS) and differential scanning calorimetry (DSC). Certain heat treated samples were additionally investigated by high-resolution transmission electron microscopy (HRTEM). Even for x = 32 there are no indications for any kind of phase separation in the as-quenched state within experimental resolution, i.e. the critical temperature Tc for a liquid-liquid phase separation has already decreased from 1556 K for binary Cu60Co40 to a temperature below the glass transition temperature Tg = 762(5)K found for (Cu60Co40)68Zr32. Combined in-situ SAXS/WAXS and HRTEM investigations reveal that thermal annealing also does not induce an amorphous-amorphous phase separation. Instead the formation of nano crystallites of a so far unknown Cu-rich/Zr-poor phase with relatively low activation energy for crystallization Ea = 116(7) kJ/mol at temperatures far below the crystallization temperature deduced from DSC measurements is observed.  相似文献   

4.
A fundamental understanding of the nature and structure of the glass transition in amorphous materials is currently seen as a major unsolved problem in solid-state physics. A new conceptual approach to understanding the glass transition temperature (Tg) of glass-forming liquids called the twinkling fractal theory (TFT) has been proposed in order to solve this problem. The main idea underlying the TFT is the development of dynamic rigid percolating solid fractal structures near Tg, which are said to be in dynamic equilibrium with the surrounding liquid. This idea is coupled with the concept of the Boltzmann population of excited vibrational states in the anharmonic intermolecular potential between atoms in the energy landscape. Solid and liquid clusters interchange or “twinkle” at a cluster size dependent frequency ωTF, which is controlled by the population of intermolecular oscillators in excited energy levels. The solid-to-liquid cluster transitions are in accord with the Orbach vibrational density of states for a particular fractal cluster g(ω) ~ ωdf − 1, where the fracton dimension df = 4/3. To an observer, these clusters would appear to be “twinkling.” In this paper, experimental evidence supporting the TFT is presented. The twinkling fractal characteristics of amorphous, atactic polystyrene have been captured via atomic force microscopy (AFM). Successive two-dimensional height AFM images reveal that the percolated solid fractal clusters exist for longer time scales at lower temperatures and have lifetimes that are cluster size dependent. The computed fractal dimensions, ≈ 1.88, are shown to be in excellent agreement with the theory of the fractal nature of percolating clusters in accord with the TFT. The twinkling dynamics of polystyrene within its glass transition region are captured with time-lapse one-dimensional AFM phase images. The autocorrelation cluster relaxation function was found to behave as C(t~ t 4/3 and the cluster lifetimes τ versus width R were found to be in excellent agreement with the TFT via τ ~ R1.42. This paper provides compelling new experimental evidence for the twinkling fractal nature of the glass transition.  相似文献   

5.
6.
Hypersonic longitudinal sound velocities in five silicate and alumino-silicate liquids have been measured between 293 and 2550 K by Brillouin spectroscopy. Together with previous observations for four other glasses and liquids of the system SiO2-Al2O3-CaO-MgO, these results are used to discuss changes in hypersonic velocities in three adjacent temperature domains, i.e., below, in, and above the glass transformation range. The temperature dependence of Brillouin velocities is consistent with the observed variations with temperature of viscosity, density, and mean heat capacity for the same three temperature domains. These variations of physical properties of alumino-silicate liquids are qualitatively in agreement with the Inherent Structure Theory for liquids.  相似文献   

7.
Highly perfect single crystal whiskers of Lu5Ir4Si10 were successfully grown out of the melt. Details of the surface and morphology of the whiskers are presented. X-ray diffraction data confirmed that the whisker structure has the same tetragonal P4/mbm space group symmetry as bulk single crystals with lattice parameters a=12.484(1) and c=4.190(2) Å. By means of field emission scanning electron microscopy, the morphology of the whiskers has been studied. Using a 4-circle X-ray diffractometer we found that whiskers grow along the c-axis direction and all side faces are oriented along the [1 1 0] direction. The mosaicity has been measured and is found to be almost perfect: below 0.15° along the c-axis. According to our transport measurements performed along the c-axis, the whiskers present a sharp superconducting transition at Tc=4.1 K and show a charge density wave (CDW) transition at 77 K. From the hysteresis of the temperature dependance of the electrical resistivity study, the CDW transition is found to be of first order.  相似文献   

8.
The relationships between the chemical composition and the derivative rheological and thermodynamic values have been determined for two melt series in the anorthite-wollastonite-gehlenite (An-Wo-Geh) compatibility triangle. The melt series have 0.5 and 1 non-bridging oxygens per tetrahedrally coordinated cation (NBO/T), respectively. The influences of the ratio Si/(Si + AlCa1/2) and NBO/T on the fragility and the configurational entropy at Tg are evaluated. Linear dependencies of the viscosity, the glass transition temperature and the fragility on the ratio Si/(Si + AlCa1/2) are found for the two melt series. A crossover in the viscosity-temperature relationship is observed for both series, i.e. an inverse compositional dependence of viscosity in the high and low viscous range. The crossover presumably reflects different responses of the adjustment of melt structure to the substitution of Al3+ + 1/2Ca2+ for Si4+ in the low versus the high viscous ranges. The crossover shifts to higher temperature with increasing NBO/T.  相似文献   

9.
Novel possibilities for studying matter under extreme conditions are opened by the forthcoming availability of free electron laser (FEL) facilities generating subpicosecond photon pulses of high intensity in the VUV and X-ray range, which are able to heat thin samples up to the warm dense matter (WDM) regime. Pump-and-probe ultrafast techniques can be used to study the dynamics of phase transitions and characterize the states under extreme and metastable conditions. Ultrafast (10-100 fs) bulk heating is seen as a novel route for accessing extremely high temperature regimes as well as the transition region between low-density and high density fluids, that is presently considered a no man's land in simple liquids and glasses. Here we briefly describe the present status of the TIMEX end-station devoted to those experimental activities at the Fermi@Elettra FEL facility, and some preliminary results obtained in a pilot ultrafast experiment using a laser source as a pump and a supercontinuum probe aimed to characterize the melting process of Silicon.  相似文献   

10.
Investigations of the effect of the initial liquid phase state on the processes of solidification in Fe50Cr15Mo14C15B6 bulk-amorphized melts have been carried out by differential thermal analysis, X-ray structural analysis, metallography and viscosimetry. The anomalies caused by changing the relation of the atom microgroups of boride and carbide types have been discovered for the first time in polytherms of the melt viscosity in the vicinity of 1653 K and 1793 K. The structural changes observed in the liquid phase result in anomalies in the Fe50Cr15Mo14C15B6 melt supercooling behaviour and a change in the crystallization mechanism. Structural transformation temperatures, can be considered to be an additional factor in the search for promising alloys with optimized glass forming abilities and enhanced service properties.  相似文献   

11.
Optical properties of Er3+-doped ZBLAN glass matrix have been studied by luminescence spectroscopy under 488 nm excitation. The spectrum of the 4S3/24I15/2 transition, carried out at temperature T = 2 K, shows a new line in the lowest energy region. This new line, centered at 17 996 cm−1, was attributed to the lower transition between the Stark components of the 4S3/24I15/2 transition. Measurements from T = 2 K to room temperature show the disappearance of this new line. From the results we estimate the splitting of 415 cm−1 for the ground state and 100 cm−1 for the 4S3/2 excited multiplet. The experimental result allows us to assign the positions of the eight Stark components of the ground state multiplet of the Er3+ in the ZBLAN glass matrix.  相似文献   

12.
The structure of binary GexS100 − x chalcogenide glasses (10 < x < 30) is determined by high-resolution X-ray photoelectron spectroscopy (XPS). On the basis of compositional dependence of fitting parameters for Ge and S core level XPS spectra, the ratio between edge- and corner-shared tetrahedra is determined. It is shown that short-range order of these glasses includes fragments of high-temperature crystalline form of GeS2. When subjected to X-irradiation, the structure of investigated glasses appears to become more homogeneous than that of the as-prepared samples.  相似文献   

13.
Low-temperature resistivities, in zero-field and 8 T field, and magnetoresistance have been measured down to 1.4-300 K for stable icosahedral quasicrystals Al65Cu20+xRu15−x (x = 1.5, 1.0, 0.5, 0.0 and −0.5). The analysis of the magnetoresistance data shows an overwhelming presence of anti weak-localization effect (τso ∼ 10−12 s). But the sample with x = −0.5 shows anomalous magnetoresistance and the anti weak-localization effect breaks down (τso to be 10−15 s). The in-field σ-T between 5 K and 20 K, for x = 1.0, 0.5, 0.0 and −0.5 samples, and between 1.4 K and 40 K for x = 1.5 sample, follow a power-law behavior with an exponent of 0.5 and above ∼30 K the exponent ranges from 1.17 to 1.58. The observed power-laws basically characterize the presence of critical regime of the metal-insulator (MI) transition, dominated by electron-electron and electron-phonon inelastic scattering events respectively. In samples with x = 1.0, 0.5, 0.0 and −0.5 the in field σ-T has been found to follow ln σ-vs-T1/4 below 5 K, which indicates the presence of variable range hopping. The observed transport features indicate the occurrence of proximity of metal-insulator transition in these Al-Cu-Ru quasicrystal samples.  相似文献   

14.
Enthalpies of fusion have been measured by differential scanning calorimetry for a Na2O-SiO2 system at 50, 66.6, and 74.4 mol% SiO2. Enthalpies of mixing of liquids obtained from different calorimetry techniques are critically evaluated. The data on calorimetric enthalpy, activity of Na2O, cristobalite liquidus, and immiscibility gap are used to determine the enthalpy and entropy of mixing of sodium-silicate liquids are determined as a function of composition by the least squares method. The derived mixing properties are based only on the experimental data and are independent of any assumption about the structure and chemical species in liquids. The enthalpy of mixing has a minimum value of −120 kJ/mol at 35-40 mol% SiO2 and is convex upward around 80-90 mol% SiO2. The entropy of mixing have a maximum value of + 6 J/K-mol at 75 mol% SiO2, and it decreases with the SiO2 content to −5 J/K-mol at 40 mol% SiO2. This decrease in entropy can be accounted for by ideal mixing of Q4, Q3, and Q0 + 1 + 2 (= Q0 + Q1 + Q2) species in the liquids and is responsible for the negative temperature dependence of the partial molar Gibbs energy of mixing of Na2O, observed in activity measurements. Comparison of the present results with previous values suggests that a quasi-chemical model and the Adam-Gibbs model overestimate the configurational entropy of mixing of liquids.  相似文献   

15.
We provide new data for the stiffness, hardness, Debye temperatures and crystallization and glass transition temperatures for fourteen Ti-TL and Hf-TL amorphous alloys (TL = Ni,Cu) covering wide composition range (x(TL) ≤ 70). These data increase linearly with x, as was previously observed for Zr-TL glassy alloys. Thus, the strength of interatomic bonding (reflected in stiffness) in all TE-TL amorphous alloys (TE = Ti,Zr,Hf) increases with x for x ≤ 65. The actual variations of studied properties depend on TE, being feeble for TE = Ti. The approximately linear variation of mechanical, vibrational and thermal parameters with x enables one to estimate these parameters for pure amorphous TEs, but does not indicate compositions at which bulk metallic glasses (BMG) form in these alloy systems. The reduced glass transition temperature Trg is the property which roughly correlates with the formation of BMGs in glassy TE-TL alloys.  相似文献   

16.
In this work, new glass compositions in the TeO2-GeO2-Nb2O5-K2O system have been prepared and studied. The germanotellurite glasses were prepared by melt-quenching and their density, refractive index and characteristic temperatures have been determined. The structure of these glasses has been studied by infrared and Raman spectroscopies.The progressive replacement of TeO2 by GeO2 led to an increase of the glass transition and crystallisation temperatures of the glasses and a simultaneous decrease of their density and refractive index. Typical density and refractive index values of these glasses ranged from 4.98 to 3.85 g cm− 3 and 2.08 to 1.79, respectively, with increasing GeO2 content. The infrared spectra are dominated by a band ~ 640 cm− 1 in the tellurite glass and ~ 800 cm− 1 in the germanate glass. The Raman spectra of the germanotellurite glasses present an intense boson peak between ~ 34 and 47 cm− 1, together with high frequency peaks at ~ 670 cm− 1 and ~ 470 cm− 1 for high tellurite and high germanate glass compositions, respectively. The vibrational spectra of these germanotellurite glasses indicate that the glass network consists basically of TeO4 and [TeO3]/[TeO3 + 1] units, mixed with GeO4 and NbO6 polyhedra.  相似文献   

17.
Cluster modelling based on ab-initio calculations testifies lack of intermediate optimally-constrained phase in binary GexSe100-x system within expected reversibility window (20 ≤ × < 26) in terms of global connectivity. Network of these glasses within 20 ≤ × < 26 compositional range can be composed of over-constrained “outrigger raft” structural motives built of two edge- and four corner-shared GeSe4/2 tetrahedra interconnected via optimally-constrained ≡ Ge―Se―Se―Ge≡ bridges, extra Se atoms forming ring-like configurations instead of Se―Se dimers.  相似文献   

18.
Self-diffusion of a single atom α in glass-forming liquids, AxByCz ?, is studied from a unified point of view based on the mean-field theory (MFT) proposed recently by the present author, where α ∈ {ABC,...} and x + y + z + cdots = 100. Several experimental data and simulation results available at present are then analyzed consistently with the aid of MFT. Thus, it is shown that there exists a master curve for the long-time self-diffusion coefficient DSL(α)of α atom, even though atom α belongs to any different multicomponent glass-forming liquids. This suggests that if a whole data set for DSL(α) in a simple glass-forming liquid is once found, only one data point for α atom in any other complex glass-forming liquids is enough to predict a whole control parameter dependence of DSL(α) for each α atom belonging to those liquids.  相似文献   

19.
Interfacial reactions between silica glass and tellurite melts were studied under confined conditions in the temperature regime of 400-700 °C, applying two different sampling techniques: isothermal heat-treatment of a several micrometer thick tellurite film, confined in a silica/tellurite/silica sandwich, and capillary filling of tellurite melts into silica microcapillaries. The sandwich technique provides detailed ex situ insights on the interface chemistry, microstructure and diffusion after given treatment times and temperatures. Data on dynamic viscosity, surface tension, wetting behaviour and eventual scaling effects was obtained from the capillary filling technique. For temperatures > 500 °C, silica is completely wet by the considered tellurite melts. At T > 600 °C and for a treatment time of 20 min or longer, cationic diffusion of Na+ and Te4+ into the silica substrate occurs to a depth of several micrometers. At the same time, the tellurite melt attacks the silica surface, leading to the formation of a stationary silica-tellurite reaction layer and silica dissolution. Dissolved silica was observed to re-precipitate from the tellurite melt by liquid-liquid phase separation. In the early reaction stages, as a result of alkali diffusion into the silica substrate, β-quartz crystallizes at the interface (what can be avoided by using alkali-free filling glasses). Obtained data set the boundary conditions for the generation of tellurite-silica all-solid fiber waveguides by melt infiltration of silica photonic crystal fibers or microcapillaries.  相似文献   

20.
Glasses in the ternary ZnO-P2O5-TeO2 system were prepared and studied in two compositional series (100 − x)[0.5ZnO-0.5P2O5]-xTeO2 (X-series) and 50ZnO-(50 − y)P2O5-yTeO2 (Y-series) within the concentration range of x = 0-60 and y = 0-40 mol% TeO2. Their structure was studied by Raman and 31P MAS NMR spectroscopies. The incorporation of TeOx units into the structural network is associated with the depolymerisation of phosphate chain structure as revealed by both methods. At a high TeO2 content isolated PO4 tetrahedra are formed in the structure of glass series Y, while diphosphate O3P-O-PO3 groups are present in the structure of the glass series X. In the structure of glass series Y tellurium atoms form predominantly TeO3 trigonal pyramids, whereas in the X glass series TeO4 trigonal bipyramids prevail in the glass structure. The addition of TeO2 to the parent zinc metaphosphate glass results in a decrease of glass transition temperature in both compositional series associated with the replacement of stronger P―O bonds by weaker Te―O bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号