首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier Transform Infrared (FTIR) Spectroscopy has long been utilized as an analytical technique for qualitatively determining the presence of various different chemical bonds in gasses, liquids, solids, and on surfaces. Most recently, FTIR has been proven to be extremely useful for understanding the different types of bonding present in low dielectric constant “low-k” organosilicate materials. These low-k materials are predominantly utilized in the nanoelectronics industry as the interlayer dielectric material in advanced Cu interconnect structures. In this article, we utilize FTIR to perform a detailed analysis of the changes in chemical bonding that occur in Plasma Enhanced Chemically Vapor Deposited (PECVD) low-k a-SiC:H thin films. PECVD low-k a-SiC:H materials are equally important in advanced Cu interconnects and are utilized as both etch stop and Cu diffusion barrier layers. We specifically investigate the changes that occur in low-k a-SiC:H films as the dielectric constant and mass density of these films are decreased from > 7 to < 3 and from 2.5 to 1 g/cm3 respectively. We show that decreases in mass density and dielectric constant are accompanied by both an increase in terminal SiHx and CHx bonding and a decrease in SiC network bonding. At densities of 1.85 g/cm3, the concentration of terminal SiHx bonding peaks and subsequent hydrogen incorporation are achieved predominantly via terminal CH3 groups. Low-k a-SiC:H films with k < 3.5 and density < 1.3 g/cm3 can be achieved via incorporating larger organic phenyl groups but result in non-stoichiometric carbon rich films. Electron beam curing of these lower density a-SiC:H films results in volatilization of the phenyl groups leaving behind nanoporous regions and production of some CCC chain linkages in the network.  相似文献   

2.
a-Si1?xCx:H films are deposited by RF plasma enhanced chemical vapor deposition (PECVD) at different RF powers with hydrogen-diluted silane and methane mixture as reactive gases. The structure and properties of the thin films are measured by infrared spectroscope (IR), Raman scattering spectroscope and ultra violet–visible transmission spectroscope (UV–vis), respectively. Results show that the optical band gap of the a-Si1?xCx:H thin films increases with increasing Si–C bond fraction. It can be easily controlled through controlling Si–C bond formed by modulating deposition power. At low deposition power, the bond configuration of the a-Si1?xCx:H thin film is more disordered owing to the distinct different bond lengths and bond strengths between Si and C atoms. At a too high deposition power, it becomes still high disordered due to dangling bonds appearing in the a-Si1?xCx:H thin film. The low disordered bond configuration appears in the thin film deposited with moderate deposition power density of about 2.5 W/cm2.  相似文献   

3.
DC magnetron power dependence of a-SiC:H IR absorption properties   总被引:1,自引:0,他引:1  
The infrared absorption properties of a-SiC:H thin films dependence with the dc magnetron power density were investigated. The films were deposited in a mixture of CH4, H2 and Ar. The target used was polycrystalline Si. We found that the dc magnetron power density has an important contribution to the film composition. There is a strong dependence of the Si-H and Si-C bonds with the dc power density.  相似文献   

4.
Amorphous non-hydrogenated germanium carbide (a-Ge1 − xCx) films have been prepared by magnetron co-sputtering system designed by ourselves. The chemical bonding and microstructure have been analyzed using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The optical properties of the films have been investigated by means of spectroscopic ellipsometry. The relationship between the chemical bonding and the optical properties has been explored. It has been found that all films with the constant carbon content are amorphous. The sp2 CC and sp3 GeC bonds increase with Ts, and some sp2 CC bonds gain infrared activity. The fraction of sp3 GeC bonds rises with Ts, but the fraction of sp3 GeGe bonds gradually drops down. In addition, the refractive index and extinction coefficient increase with Ts. The film optical gap is seen to reach 1.15 eV when Ts is 200 °C. However, the optical properties of a-Ge1 − xCx films almost remain stable with the substrate temperature.  相似文献   

5.
Phase diagrams have been established to describe very high frequency (vhf) plasma-enhanced chemical vapor deposition (PECVD) of intrinsic hydrogenated silicon (Si:H) and silicon–germanium alloy (Si1?xGex:H) thin films on crystalline Si substrates that have been over-deposited with n-type amorphous Si:H (a-Si:H). The Si:H and Si1?xGex:H films are prepared under conditions used for the top and middle i-layers of high efficiency triple-junction a-Si:H-based n–i–p solar cells. Identical n/i cell structures were co-deposited in this study on textured (stainless steel)/Ag/ZnO which serve as substrate/back-reflectors in order to relate the phase diagrams to the performance parameters of single-junction solar cells. This study has reaffirmed that the highest efficiencies for a-Si:H and a-Si1?xGex:H solar cells are obtained when the i-layers are prepared under previously-described maximal H2 dilution conditions.  相似文献   

6.
《Journal of Non》2006,352(23-25):2647-2651
The infrared (IR) absorption dependence on visible light illumination has been measured in doped and undoped hydrogenated amorphous silicon carbide (a-Si1−xCx:H) films grown by plasma enhanced chemical vapour deposition. The measurements were made by a highly sensitive technique which exploits properly designed a-Si1−xCx:H/ZnO test waveguides for lengthening the interaction region between the IR and visible (VIS) radiations in the material. Experimental data show that boron doping strongly enhances the VIS light induced variation of the IR absorption, whereas the increase in carbon content has a quenching effect on the phenomenon. The a-SiC:H films have been also characterized by photoluminescence measurements. The spectra are dominated by a photoluminescence band, ranging between 1.4 eV and 1.9 eV. This band is enhanced by the increase in carbon content, while is strongly quenched with increasing B-doping level. On the basis of these results, a correlation is found between the measurements of optical absorption, photo-induced absorption and photoluminescence. The type and the density of defects induced in the films by the different growth conditions have been recognized as the origin of the different behaviors observed.  相似文献   

7.
G. Rehder  M.N.P. Carreño 《Journal of Non》2008,354(19-25):2359-2364
In this paper we study the Young’s modulus of PECVD obtained silicon rich (x > 0.5) a-SixC1?x:H thin films through the study of the resonance frequency of free standing cantilevers. These structures are fabricated based on front side bulk micromachining of Si substrate and actuated thermally. In this approach, an alternating electric current passes through a photolithography patterned metallic film deposited on the cantilever, heating the structure by Joule effect and inducing vibrations on the cantilever. This method of actuation is independent of the separation between the structure and substrate, which is its main advantage, because it allows the actuation of cantilevers that are bent upwards or downwards, which is an aspect of particular importance in the characterization of PECVD materials for MEMS applications. The work is focused on low stress silicon rich amorphous hydrogenated silicon carbide films obtained by PECVD at low temperatures (320 °C). The measurements were carried out in groups of cantilevers with different length (between 550 and 200 μm) and utilizing a-SiC:H films obtained with three different compositions. The results show that the films exhibit modulus of elasticity in the range of 20–35 GPa, low residual stress (~90 GPa) and maintain excellent chemical inertness in KOH and HF solutions.  相似文献   

8.
The bonding rearrangement upon thermal annealing of amorphous silicon nitride (a-SiNx:H) films deposited by hot-wire chemical vapor deposition was studied. A wide range of N/Si atom ratio between 0.5 and 1.6 was obtained for the a-SiNx:H sample series by varying the source gases ratio only. Evolutions of Si–N, Si–H and N–H bonds upon annealing were found to depend strongly on the N/Si atom ratio of the films. According to the above observations, we propose possible reaction pathways for bonding rearrangement in a-SiNx:H with different N/Si ratios.  相似文献   

9.
Amorphous silicon nitride (SiNX:H) thin films grown by the plasma enhanced chemical vapor deposition (PECVD) method are presently the most important antireflection coatings for crystalline silicon solar cells. In this work, we investigated the optical properties and chemical bonding characteristics of the amorphous SiNX:H thin films deposited by PECVD. Silane (SiH4) and ammonia (NH3) were used as the reactive precursors. The dependence of the growth rate and refractive index of the SiNX:H thin films on the SiH4/NH3 gas flow ratio was studied. The chemical bonding characteristics and the surface morphologies of the SiNX:H thin films were studied using the Fourier transform infrared spectroscopy and atomic force microscopy, respectively. We also investigated the effect of rapid thermal processing on the optical properties and surface morphologies of the SiNX:H thin films. It was found that the rapid thermal processing resulted in a decrease in the thickness, increase in the refractive index, and coarser surfaces for the SiNX:H thin films.  相似文献   

10.
Zirconium thin films grown on Si substrates by a planar magnetron sputtering system were thermally oxidized at oxygen ambient within 523‐823 K resulting in zirconium oxide films with various stoichiometries. XRD analysis of the ex situ oxidized films revealed the phases at different oxidation temperatures. To achieve a reasonable fit between the experimental and SIMNRA simulated RBS spectra of the prepared samples; it was required to introduce a SiO2buffer layer in the simulated target between Si substrate and ZrO2 film. The presence of this intermediate SiO2 layer was confirmed by observation of SiO2 phase in the XRD patterns of all the thermally oxidized samples. Using RBS analysis data, the effect of oxidation temperature on the stoichiometry of zirconium oxide films and thickness of ZrOxand SiO2 films were investigated. XRD patterns of thermally oxidized Zr films also revealed that crystallization of zirconium oxide films was initiated at about 673 K and was almost completed at 823 K. Diffusion of oxygen atoms through surface layer was investigated and the effective activation energy for oxygen mass transport was estimated to be 1.75 eV using RBS data and Arrhenius relation. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
C.W. Chang  T. Matsui  M. Kondo 《Journal of Non》2008,354(19-25):2365-2368
Paramagnetic defects of undoped hydrogenated microcrystalline silicon–germanium alloys (μc-Si1?xGex:H) grown by low temperature (200 °C) plasma-enhanced chemical vapor desposition (PECVD) have been measured by electron spin resonance (ESR) and compared with those of hydrogenated amorphous silicon–germanium (a-Si1?xGex:H). The spin density of μc-Si1?xGex:H increases with Ge content and shows a broad maximum of ~1017 cm?3 at x  0.5, which reasonably accounts for the decreased photoconductivity. While the Ge dangling bond defects prevail in a-Si1?xGex:H for Ge-rich compositions, we detected no ESR signal in μc-Si1?xGex:H for x > 0.75 where an electrical change occurs from weak n- to strong p-type conduction. These results indicate that dangling bonds are charged in large densities due to the presence of the acceptor-like states in undoped μc-Si1?xGex:H.  相似文献   

12.
Thin-film photovoltaics greatly reduce the semiconductor material content in the finished product, using 150–200 times less material as compared with conventional Si wafer based cells. Electron beam evaporation (e-beam), a non-ultra-high vacuum technique has the potential for being inexpensive, and simpler process for a-Si deposition. It offers specific advantages such as high Si deposition rate (up to 1 μm/min), excellent Si source material usage, avoidance of toxic gases, and simple sample preparation conditions. In this work, we report the growth of a-Si films using e-beam at a growth rate exceeding 30 Å/s (1–5 Å/s for conventional PECVD process). We report the effect of hydrogen passivation on amorphous silicon network and on silicon-bonded hydrogen configuration under ex-situ hydrogenation in hydrogen plasma. The hydrogen concentration and silicon-hydrogen bonding configuration was evaluated using nuclear reaction analysis (NRA) and Fourier transform infrared spectroscopy (FTIR). Hydrogen plasma treatment shows an increase in the monohydride bond concentration with substrate temperature, and is corroborated by our FTIR investigation, in addition to reducing clustered monohydride bonds or polyhydride bonds in a-Si:H film. Raman analysis indicates reduction in silicon bond angle as well as the bond distance, both leading to significant structural improvement in short-range and medium range order in the amorphous phase. Thus, ex-situ hydrogenation clearly demonstrates the possibility of comparable hydrogen passivation in e‐beam evaporated a-Si films with high growth rate. One can easily extrapolate this result to microcrystalline film growth, assuming the structural improvement of the silicon network preceding the microcrystalline nucleation, where ex-situ passivation is most effective. Thus ex-situ hydrogenation opens up new possibilities in minutely tailoring the a:Si film properties especially for solar cell applications.  相似文献   

13.
Lihua Jiang  Xiao Zhang 《Journal of Non》2011,357(10):2187-2191
The effects of the annealing temperature on photoluminescence (PL) of non-stoichiometric silicon nitride (SiNx) thin films deposited by plasma enhanced chemical vapor deposition (PECVD) using ammonia and silane mixtures at 200 °C were investigated. The optical property and the chemical composition of the films annealed at different temperatures were investigated by PL spectroscopy and Fourier transform infrared absorption spectroscopy (FTIR), respectively. Based on the PL results and the analyses of the bonding configurations of the films, the light emission is attributed to the quantum confinement effect of the carriers inside silicon nanoparticles and radiative defect-related states. These results provide a better understanding of optical properties of silicon nanoparticles embedded in silicon nitride films and are useful for the application of nanosize silicon semiconductor material.  相似文献   

14.
The growth and microstructure of hydrogenated carbon nitride a-CNx:H (0 ? x ? 0.10) films deposited by PECVD have been studied. Upon the analysis of FTIR spectra, Raman spectra and XPS, it is concluded that π doping could take place even at a very low percentage of nitrogen, which favors the formation of sp2 carbon clusters. The C 1s peak shifts toward higher binding energy while the N 1s peak remains constant as the nitrogen content in the film increases, which can be considered as a result of the chemical shifts on charge transfer due to the strong electronegativity of the N atom. 3D profile measurements show that there were a great number of particles formed when nitrogen is incorporated in to the films and the particles coalescence when the nitrogen content increases due to enhanced surface diffusion. The stress of the films converts from compressive to tensile stress gradually with increased N content. The elimination of grain boundaries and annihilation of excess vacancies, due to columnar structure increasing by diffusion leads to volume shrinkage of the film, thus causing tensile stress. These analyses were fairly consistent to help understand the effects of nitrogen in hydrogenated carbon films.  相似文献   

15.
The electronic properties of a-Si:H vary with hydrogen passivation of dangling bond defects. It appears this effect is also operative in semiconducting amorphous hydrogenated boron carbide (a-B5C:H). Therefore, the ability to quantify the amount of hydrogen will be key to development of the materials science of a-B5C:H. The results of an initial investigation probing the ability to quickly correlate hydrogen concentration in a-B5C:H films with infrared spectroscopy are reported. a-B5C:H thin films were growth on Si (1 1 1) substrates by plasma-enhanced chemical vapor deposition (PECVD) using sublimed orthocarborane and argon as the precursor gas. Nuclear reaction analysis (NRA) was performed to quantify the atomic concentration of H in the a-B5C:H films. While the observed vibronic structure does not show stretches due to terminal C–H or bridging B–H–B, analysis of the terminal B–H stretch at ~2570 cm?1 gives a proportionality constant of A = 2 × 1022 cm?2. We conclude that the methods previously developed for correlating H concentration to infrared data in a-Si:H are similarly viable for a-B5C:H films.  相似文献   

16.
M.M. Ibrahim  S.A. Fayek 《Journal of Non》2011,357(10):2035-2038
Thermally induced solid state reaction of Ag(Cu) into thin Ge(Sx Se1 − x)2 films with x = 0, 0.1, 0.4 and 1.0 was investigated using a step by step technique in order to design films with exact Ag(Cu) concentrations for applications in integrated IR optical devices. A thin film of Ag(Cu) was deposited on top of the host Ge(Sx Se1 − x)2 films followed by annealing in vacuum at constant temperature, which resulted in homogeneous films of good optical quality. The variation in Ag(Cu) concentration in the films ranged between 5 and 35 at.%. The kinetics of the diffusion and dissolution of metal in the host films was measured by optically monitoring the change in thickness of doped chalcogenide during consecutive thermal annealing steps. The kinetics studies revealed that the thermal dissolution rate of the Cu is greater than that of Ag. Optical UV-VIS transmission spectra of chalcogenide glass layers, undoped and thermal doped by Ag(Cu), were measured to establish the optical properties of the films. The spectra were analyzed using the technique proposed by Swanepoel and the results show that the addition of metal increases the absorption coefficient in the power-law regime and consequently the optical gap decreases and the refractive index increases. The amorphous character of the films was checked by X-ray diffraction which confirmed the amorphous structure of all Ag(Cu)GeSSe thin films.  相似文献   

17.
18.
The formation kinetics of μc-Si:H has been investigated through the film depositions and plasma diagnoses in widely-scanned glow discharge plasma conditions; RF power density, SiH4/H2 ratio and substrate temperature. The roles of H and SiHx adsorbed on the surface as well as impinging ions have been discussed in relation to volume fraction and crystallite size of μc films, and continuous control of crystallite size has been demonstrated using a triode system. Hall mobility of the deposited μc-Si:H films has also been presented as a function of the volume fraction of μc.  相似文献   

19.
The network structure of amorphous silicon-carbon alloy (a-Si1−xCx) has been studied over a wide range of x. The a-Si1−xCx thin films were prepared by sputtering silicon and carbon target with argon in radio-frequency magnetron sputtering equipment. The films were characterized by X-ray photoelectron spectroscopy, optical absorption, infrared absorption, and mechanical measurements. The results showed that the network structure could be classified neither as the random covalent network nor as the chemically ordered covalent network. The structure as a whole was close to the random covalent network, but the Si-Si combination at x>0.5 showed a feature of the chemically ordered covalent network. The film at 0.6<x<0.8 was hard and showed a high energy gap, due to the sp3 configuration in Si-C combinations.  相似文献   

20.
Three sets of boron nitride (BN) thin films are deposited with different N2/B2H6 flow ratios (r = 4, 10 and 25) by plasma enhanced chemical vapor deposition (PECVD). The variations of physical properties in different deposition sets are analyzed by optical (XPS, FTIR, UV–visible spectroscopies), mechanical and electrical measurements. The films are considered to be deposited in a turbostratic phase (t-BN). Evolution of bonding configurations with increasing r is discussed. Relatively higher nitrogen flow rate in the source gas mixture results in lower deposition rates, whereas more ordered films, which tend to reach a unique virtual crystal of band gap 5.93 eV, are formed. Anisotropy in the film structure and film inhomogeneity along the PECVD electrode radial direction are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号