首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A modified Robinson-Stokes equation with terms that consider the formation of ionic hydrates and associates is used to describe thermodynamic properties of aqueous solutions of electrolytes. The model is used to describe data on the osmotic coefficients of aqueous solutions of alkali metal carboxylates, and to calculate the mean ionic activity coefficients of salts and excess Gibbs energies. The key contributions from ionic hydration and association to the nonideality of solutions is determined by analyzing the contributions of various factors. Relations that connect the hydration numbers of electrolytes with the parameters of the Pitzer-Mayorga equation and a modified Hückel equation are developed.  相似文献   

2.
3.
The authors present a model describing the coexistence of hydrophobic association and phase separation with lower critical solution temperature (LCST) in aqueous solutions of polymers carrying short hydrophobic chains at both chain ends (telechelic associating polymers). The LCST of these solutions is found to decrease along the sol/gel transition curve as a result of both end-chain association (association-induced phase separation) and direct hydrophobic interaction of the end chains with water. The authors relate the magnitude of the LCST decrease to a hydration cooperativity parameter sigma. The LCST decreases substantially (approximately 100 K) in the case of random hydration (sigma=1), whereas only a small shift (approximately 5-10 K) occurs in the case of cooperative hydration (sigma=0.3). The molecular weight dependence of the LCST drop is studied in detail in each case. The results are compared with experimental observations of the cloud points of telechelic poly(ethylene oxide) solutions, in which random hydration predominates, and of telechelic poly(N-isopropylacrylamide) solutions, in which cooperative hydration prevails.  相似文献   

4.
丁皓  朱宇  王俊  陆小华  马晶 《化学学报》2004,62(14):1287-1292,J002
对NaCl等碱金属水溶液的研究表明,室温条件下,离子在溶液中以水合形式存在,而在高温及超临界时,阴阳离子将结合成为离子对.采用量子化学计算,研究了MgCl2与CaCl2水溶液中水化与缔合的情况.通过Gaussian98软件包计算了阳离子的水化自由能以及离子对的生成能,从而获得水合离子与离子对的热力学稳定性及其随温度、压力的变化情况.通过比较热力学稳定性,考察了两种溶液中水化与缔合的变化情况.研究结果表明,MgCl2与CaCl2水溶液中离子水化与缔合的变化趋势与碱金属溶液基本一致,但是存在一个过渡区域,该区域内离子对与水合离子共存,因此需要采用不同于碱金属溶液的方法处理MgCl2与CaCl2水溶液.  相似文献   

5.
The thermodynamic theory of binary aqueous solutions of electrolytes taking into account the electrostatic interaction of ions and their hydration and association was extended to multicomponent solutions. Equations for calculating the osmotic coefficient of multicomponent solutions from parameter estimates (hydration and association numbers under standard conditions) determined for the corresponding binary subsystems were substantiated. Interval parameter estimates were used to calculate the osmotic coefficients for several three-five-component aqueous solutions containing both nonelectrolytes and electrolytes. A comparison of the results with the literature data showed that cross interactions between components could be ignored for the multicomponent solutions studied.  相似文献   

6.
建立了水溶液中脂肪族α- 氨基酸疏水自缔合相互作用的化学模型, 根据模型方程对由精密流动微量热法测得的α- 氨基酸水溶液的稀释焓数据进行回归分析, 得到等步自缔合作用的平衡常数(K)、焓变(ΔHm)和熵变(ΔSm)等热力学参数, 发现焓、熵之间存在很好的补偿关系. 同时计算了溶液中水的偏摩尔过量熵(SE1), 并根据脂肪族α- 氨基酸的水化模型对结果进行了讨论. 建立的化学模型参数能在一定程度上解释McMillan- Mayer模型中的同系焓作用系数的物理意义.  相似文献   

7.
Experimental measurements of density at different temperatures ranging from 293.15 to 313.15 K, the speed of sound and osmotic coefficients at 298.15 K for aqueous solution of 1-ethyl-3-methylimidazolium bromide ([Emim][Br]), and osmotic coefficients at 298.15 K for aqueous solutions of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) in the dilute concentration region are taken. The data are used to obtain compressibilities, expansivity, apparent and limiting molar properties, internal pressure, activity, and activity coefficients for [Emim][Br] in aqueous solutions. Experimental activity coefficient data are compared with that obtained from Debye-Hückel and Pitzer models. The activity data are further used to obtain the hydration number and the osmotic second virial coefficients of ionic liquids. Partial molar entropies of [Bmim][Cl] are also obtained using the free-energy and enthalpy data. The distance of the closest approach of ions is estimated using the activity data for ILs in aqueous solutions and is compared with that of X-ray data analysis in the solid phase. The measured data show that the concentration dependence for aqueous solutions of [Emim][Br] can be accounted for in terms of the hydrophobic hydration of ions and that this IL exhibits Coulombic interactions as well as hydrophobic hydration for both the cations and anions. The small hydration numbers for the studied ILs indicate that the low charge density of cations and their hydrophobic nature is responsible for the formation of the water-structure-enforced ion pairs.  相似文献   

8.
In two papers Zavitsas described a model for the thermodynamic properties of aqueous solutions of a single electrolyte or nonelectrolyte (Zavitsas, J Phys Chem B 105:7805–7817, 2001; J Solution Chem 39:301–317, 2010) in which he assumed that part of the water is so strongly bound to the solute that it can be considered as part of it, and thus only the remaining unbound water is considered to be the solvent. He showed that when the usual water mole fraction was replaced by the resulting mole fraction of unbound water, obtained by optimizing an effective hydration number, basically linear relations were obtained to fairly high molalities for the freezing temperature lowering, boiling temperature elevation, and the water activity/vapor pressure of water. However, Zavitsas only considered the properties of the solvent, not the solute. In this paper we derive the corresponding expressions for the activity coefficient of the solute for the usual molality scale based on 1 kg of water, for the modified molality scale based on 1 kg of unbound water, for the mole fraction scale based on the total number of moles of water, and for the modified mole fraction scale based on the number of moles of unbound water. These equations show that if the hydration number is larger than the stoichiometric ionization number of the electrolyte, then all four types of mean activity coefficients are predicted to always be >1 (nearly all hydration numbers reported by Zavitsas for electrolyte solutions are greater than the corresponding ionization numbers), which directly conflicts with extensive experimental and theoretical evidence that the mean activity coefficients of electrolytes in aqueous solutions always initially decrease below unity. In contrast, for nonelectrolyte solutions, the hydration model of Zavitsas gives more realistic values of the activity coefficients.  相似文献   

9.
A new speciation-based group contribution model for activity coefficients is proposed to estimate the equilibrium properties of aqueous solutions containing electrolytes. The chemical part of the model accounts for the hydration equilibrium of water and ions with the formation of ion n-water complexes in a single stage process; the hydration number n and the hydration equilibrium constant K are the two independent parameters in this part. The physical part of the model is the UNIFAC group contribution model for short-range interactions. Each ion is considered as a group. Long-range interactions are accounted for by a Pitzer contribution (Debye–Hückel theory). The model is compared with experimental data at 25 °C including water activity, osmotic coefficients, activity coefficients, and pH of binary diluted and concentrated electrolyte solutions (up to 20 mol kg−1 for NaOH, 16 mol kg−1 for HCl, etc.).  相似文献   

10.
朱龙华  平磊  雷毅 《化学学报》2005,63(14):1293-1297,i002
测量了N,N-二甲基乙酰胺(DMA)水溶液体系不同温度下全浓度范围的^1H NMR数据,对体系中的缔合情况进行了讨论。应用化学缔合模型求得了各缔合平衡常数K和缔合平衡的△H,结合N,N-二甲基甲酰胺(DMF)和N-甲基乙酰胺(NMA)水溶液的研究结果,发现酰胺自身结构和酰胺浓度是影响酰胺水溶液性质的主要因素。  相似文献   

11.
The mechanisms for the anionic and cationic interactions with myofibrillar proteins in aqueous solutions were investigated by nuclear magnetic resonance over a wide range of salt concentration. Markedly nonlinear dependeces of the 17O and 23Na NMR transverse relaxation rates on salt concentration were analyzed with a thermodynamic linkage model of salt-dependent solubility and hydration (ligand-induced association model), according to Wyman's theory of linked functions. Nonlinear regression analysis of both 17O and 23Na NMR data suggested cooperative, reversible binding of hydrated ions to myofibrillar proteins. Both ions and water were found to exchange fast, on the NMR timescale, between the binding sites of the myofibrillar proteins and the aqueous solution. At sodium chloride concentrations higher than about 0.1 grams salt/gram water, ion activities have marked effects upon the NMR relaxation rates of both ions and water. A salt activity model allowed quantitative fitting of the NMR data at high salt concentrations. The effect of neglecting the ion activity in solutions of myofibrillar proteins was also estimated and compared with the ligand-induced, cooperative association model for myofibrillar proteins. The comparison between the 17O and 23Na results strongly suggests that water is exchanged as the hydrated ion species between the myofibrillar protein binding sites and the bulk, aqueous solution.  相似文献   

12.
The first and second association constants, K1 and K2, for ion pair formation in aqueous 0.02-3.5 M solutions of bis(trimethyl)-alpha,omega-alkanediammonium halides with variable spacer lengths, 1-n-1 2X (n = 2-4, X = Cl, Br) and bolaform salts and for tetramethylammonium halides (TMAX, X = Cl, Br), K(TMAX), were determined by the chemical trapping method. Values for K(TMAX) are small, K(TMABr) = 0.83 M(-1) and K(TMACl) = 0.29 M(-1), in agreement with literature values. For the bolaform salts, K1 depends on spacer length and counterion type, ranges from 0.4 to 17 M(-1), is 2-10 times larger than K2, is larger for Br- than Cl-, and decreases by a factor of approximately 3 for Cl- and approximately 10 for Br- as n increases from 2 to 4. K2, for the formation of bolaform dihalide pair, is essentially the same as that for ion pair formation in TMAX solutions, i.e., K2 approximately K(TMAX). Values of K1 and K(TMABr) obtained from changes in 79Br line widths are in good agreement with those obtained by chemical trapping. The results are consistent with a thermodynamic model in which the ion association depends on the balance of the ion specific hydration free energies of cations and anions and their ion specific and hydration interactions in ion pairs. Spacer length dependent ion pairing by bolaform electrolytes, which are analogues of the headgroups and counterions of gemini amphiphiles, suggests a new model for the spacer length dependent sphere-to-rod transitions of gemini micelles. Neutral, but polar, headgroup-counterion pairs have a lower demand for hydration that free headgroups and counterions, and headgroup-counterion pair formation releases interfacial water into the bulk aqueous phase, permitting tighter amphiphile packing in rodlike micelles.  相似文献   

13.
The ionic coefficients of the pair interionic interaction in aqueous solutions of 1–1 electrolytes at 298 K were determined from the real activity coefficients of single-charged single ions using the McMillan–Mayer formalism. Analysis of the results of calculations revealed that salt effects are stronger in the case of cations. The weakening of cation hydration (increased negative hydration) and the strengthening of anion hydration (increased positive hydration) enhance the mutual salting of cations and anions. It is shown that the structural effects of hydration produce a strong effect on the interionic interaction in solutions.  相似文献   

14.
报道了甘氨酸、L-丙氨酸和L-丝氨酸3种典型氨基酸在D-木糖水溶液中的体积性质.  相似文献   

15.
A model that considers the contributions from hydration, ion association, and electrostatic interactions to the nonideality of 2?1 electrolyte solutions is substantiated. The parameters of the model’s equations are the mean ion hydration number, the spread of the distribution of hydrated ion stoichiometric coefficients in the standard state, and the number of association. The model is successfully used to describe literature experimental data on the concentration dependence of osmotic coefficients of aqueous CaCl2 solutions at temperatures ranging from 0 to 100°C. The modeling of the above systems shows that as the temperature rises, the hydration number falls slightly, the distribution of the hydration number broadens, and the ion paring of the salt rises by the first degree.  相似文献   

16.
Amino acid ionic liquids (AAILs) have huge potential in the field of protein chemistry, enzymatic reactions, templates for synthetic study etc. which is due to their distinctive properties like unique acid-base characteristics, tunable hydrophobicity, hydrogen bonding ability and strong hydration effects. To explore the field of bio-ionic liquids for its real life applications and sustainable technology development, it is essential to have better understanding of these newly researched liquid salts in life’s most chosen medium, i.e. in aqueous medium, through study of their physicochemical properties in aqueous solutions. In this context, we are reporting herewith measurements and analysis of volumetric properties in the temperature range of (293.15 to 313.25) K and acoustic properties at 298.15 K in the concentration range of (0.05 to 0.5) mol · kg−1 for aqueous solutions of 1-butyl-3-methylimidazolium [Bmim] based amino acid ionic liquids, prepared from glycine, l-alanine, l-valine, l-leucine and l-isoleucine. The experimental density and sound speed data were used to obtain apparent, partial and limiting molar volumes as well as isentropic and isothermal compressibility properties. These data have been further used to understand electrostriction as well as concentration dependence of internal pressure. The hydration numbers for AAILs in aqueous medium were estimated from compressibility data using Passynski method and the estimated ionic hydration numbers are compared with those obtained using activity data. The results are explained in terms of cooperative hydration effects, hydrophobic interactions, kosmotropic behavior of AAILs, etc.  相似文献   

17.
Literature data on the thermodynamic properties of binary aqueous solutions of nonelectrolytes that show negative deviations from Raoult’s law due largely to the contribution of the hydration of the solute are briefly surveyed. Attention is focused on simulating the thermodynamic properties of solutions using equations of the cluster model. It is shown that the model is based on the assumption that there exists a distribution of stoichiometric hydrates over hydration numbers. In terms of the theory of ideal associated solutions, the equations for activity coefficients, osmotic coefficients, vapor pressure, and excess thermodynamic functions (volume, Gibbs energy, enthalpy, entropy) are obtained in analytical form. Basic parameters in the equations are the hydration numbers of the nonelectrolyte (the mathematical expectation of the distribution of hydrates) and the dispersions of the distribution. It is concluded that the model equations adequately describe the thermodynamic properties of a wide range of nonelectrolytes partly or completely soluble in water.  相似文献   

18.
The enthalpies of transfer 2-propanol, 1,2-butanediol (BD) and 1-hexanol from aqueous to aqueous α-cyclodextrin (CD) solutions have been determined by microcalorimetry at various mole fractions at 298.15 K. To clarify stabilities of inclusion complexes in aqueous solutions, hydration Gibbs energies calculation of inclusion complex of CD-alcohol were performed by using the molecular mechanics with the MMFF94s force field in the generalized born/surface area (GB/SA) model. The largest stabilization in Gibbs energy is obtained by the hydration (Δhyd H) of α-CD-1,2-butanediol complex among α-CD-butanediol isomers complexes.  相似文献   

19.
The hydration number of α-alanine in aqueous urea solutions is greater than in aqueous NaCl solutions; the ratio of the hydration numbers increases from 0.2 (m = 1) to ≈2 (m = 6). Given the same partial volumes of water, the hydration numbers of α-alanine in the two systems are close to each other.  相似文献   

20.
用液上气相色谱法测定了298.1K下蔗糖和葡萄糖水溶液中丙酮、乙醇和乙腈的活度系数。对实验规律和3个非水组分活度数(lnγ)随糖浓度(m)的变化,从糖分子平伏羟基(e-OH)水化和溶剂混溶序及溶质与糖分子间相互作用的角度作了初步解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号