首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extinction coefficients of gold nanoparticles with core size ranging from approximately 4 to 40 nm were determined by high resolution transmission electron microscopy analysis and UV-vis absorption spectroscopic measurement. Three different types of gold nanoparticles were prepared and studied: citrate-stabilized nanoparticles in five different sizes; oleylamide-protected gold nanoparticles with a core diameter of 8 nm, and a decanethiol-protected nanoparticle with a diameter of around 4 nm. A linear relationship between the logarithms of extinction coefficients and core diameters of gold particles was found independent of the capping ligands on the particle surface and the solvents used to dissolve the nanoparticles. This linear relation may be used as a calibration curve to determine the concentration or average size of an unknown nanoparticle or nanoparticle-biomolecule conjugate sample.  相似文献   

2.
Size-controlled, catalytically active PVP-stabilised Pd nanoparticles have been studied by operando liquid phase XAS during the Suzuki cross-coupling of iodonanisole and phenylboronic acid in MeOH-toluene using KOMe base. XAS reveals nanoparticles are stable to metal leaching throughout the reaction, with surface density Pd defect sites directly implicated in the catalytic cycle. The efficacy of popular selective chemical and structural poisons for distinguishing heterogeneous and homogeneous contributions in Pd catalysed cross-couplings is also explored.  相似文献   

3.
4.
ZnS nanoparticles were precipitated in diluted aqueous solutions of zinc and sulphide ions without capping additives at a temperature interval of 0.5–20°C. ZnS nanoparticles were arranged in large flocs that were disaggregated into smaller agglomerates with hydrodynamic sizes of 70–150 nm depending on temperature. A linear relationship between hydrodynamic radius (R a ) and temperature (T) was theoretically derived as R a =652 - 2.11 T. The radii of 1.9–2.2 nm of individual ZnS nanoparticles were calculated on the basis of gap energies estimated from their UV absorption spectra. Low zeta potentials of these dispersions of ?5.0 mV to ?6.3 mV did not depend on temperature. Interactions between individual ZnS nanoparticles were modelled in the Material Studio environment. Water molecules were found to stabilize ZnS nanoparticles via electrostatic interactions.   相似文献   

5.
This research aims to investigate the influence of soluble starch; lactose; carboxymethyl cellulose; urea; and polyvinylpyrrolidone on synthesis of zinc oxide nanoparticles (ZnO-NPs). Zinc acetate was used as a precursor under alkaline conditions to produce ZnO-NPs as a low-cost and efficient antimicrobial and UV-blocking agent. Characterization and antimicrobial functional properties of prepared nanoparticles were investigated and reported using FTIR, TGA, XRD, TEM, analysis, as well as antimicrobial assay, respectively. The results revealed that the thermal decomposition profile, size of ZnO-NPs, IR spectra, as well as antimicrobial activity of the prepared ZnO-NPs is governed by the type of capping agents. Crystallinity analysis showed identical patterns in peak intensities and width irrespective of the used capping agents. On the other hand, the obtained results disclosed that using soluble starch as a capping agent results in attaining lower particle size of 3–5 nm and higher antimicrobial efficacy as compared with the other capping agents.  相似文献   

6.
This paper compares the performance of three long-chain acids—oleic and elaidic (both olefinic) and stearic (aliphatic)—as a capping agent in the synthesis of magnetic Co nanoparticles. The particles were formed through thermal decomposition of dicobalt octacarbonyl in toluene in the presence of the long-chain acid, and characterized by TEM, high-resolution TEM, and SQUID measurements. Infrared spectra revealed that some of the added olefinic acid was transformed from cis- to trans-configuration (for oleic acid) or from trans- to cis- (for elaidic acid) to facilitate the formation of a densely packed monolayer on the surface of Co nanoparticles. As compared to aliphatic acids, olefinic acids are advantageous for dense packing on small particles with high surface curvatures due to a bent shape of the cis-isomer. The presence of an olefinic acid is able to control particle growth, stabilize the colloidal suspension, and prevent the final product from oxidation by air. Our results indicate that oleic acid, elaidic acid, and a mixture of oleic/stearic acids or elaidic/stearic acids have roughly the same performance in serving as a capping agent for the synthesis of Co nanoparticles with a spherical shape and narrow size distribution.  相似文献   

7.
The dispersion of polymer-covered gold nanoparticles in high molecular weight (MW) polymer matrixes is reported. Complete particle dispersion was achieved for PS125-Au in the polystyrene (PS) matrixes studied (up to and including Mn = 80 000 g/mol). PS19-Au, on the other hand, exhibits complete dispersion in a low MW PS matrix (Mn = 2000 g/mol) but only partial dispersion in higher MW matrixes (up to 80 000 g/mol). Similarly, PEO45-Au is fully dispersed in a low MW poly(ethylene oxide) (PEO) matrix (Mn = 1000 g/mol) but only partially in a higher MW PEO matrix (Mn = 15 000 g/mol). Wetting of the polymer-Au brushes by the polymer matrix is associated with dispersibility. Theory predicts that, for dense polymer brushes, wetting is achieved when the MW of the polymer brush equals (and is greater than) that of the polymer matrix. The observed partial dispersion of the PS19-Au and PEO45-Au nanoparticles in matrixes whose MW is greater than the brush MW is attributable to the existence of a high volume fraction of voids within the brush. These voids arise from the unique geometry of the nanoparticle surface arising from the juxtaposed facets of the gold nanoparticle. PS125-Au brushes are wetted by PS matrixes whose degree of polymerization is larger than 125, probably because of their lower grafting density on the gold core or the high fraction of void volumes caused by the facets on the gold cores. Dispersion thus occurs when the matrix MW is greater than that of the brush.  相似文献   

8.
Two syntheses of gold nanoparticles with fluorinated alkyl and aryl thiolate ligands are reported. The fluorous Au nanoparticles are smaller than previous gold fluor-capped examples, and are in the 44-75 Au atom size range. Fluoroalkyl thiolate-protected (1H,1H,2H,2H-perfluorodecanethiolate) nanoparticles synthesized by a Brust reaction are a mixture of (mainly) approximately 8.5 kDa (ca. 44 core atoms) and approximately 14 kDa (ca. 75 core atoms) species, by MALDI-mass spectrometry. This composition is consistent with thermogravimetric analysis (TGA) results of the ligand shell composition. 19F NMR spectra display a progressive line broadening of resonances for fluorine sites closer to the Au core. A second synthetic route used a (ligand replacement) reaction of pentafluorobenzenethiol with Au55(PPh3)12Cl6. The exchange is (as previously observed for nonfluorinated thiols) accompanied by nanoparticle core size changes to produce a polydisperse mixture within which a Au75 core species could be electrochemically discerned by its characteristic 0.74 V electrochemical energy gap. Further characterization of the polydisperse nanoparticle product was done by HPLC, TEM, TGA, optical spectroscopy, and NMR data. Both varieties of fluorous nanoparticles exhibit solubilities typical of perfluorinated materials, as opposed to proteo versions.  相似文献   

9.
Gold nanoparticles (AuNPs) in aqueous 0.10 M HCl are shown to be electroactive at oxidising potentials greater than 1.0 V (vs. Ag/AgCl) by means of voltammetric monitoring of AuNP-electrode collisions. The method promises the use of anodic particle coulometry for the detection and characterisation of the AuNPs.  相似文献   

10.
We report a novel strategy for the synthesis of aqueous stable, carboxylated gold nanoparticles (GNPs) by using glutamic acid as the reducing agent. The ratio of chloroaurate ions, AuCl(-)(4) to glutamic acid was optimized in the reaction medium to obtain monodispersed GNPs. Glutamic acid reduced gold nanoparticles were characterized by UV-visible, FTIR, dynamic light scattering and transmission electron microscopy, which demonstrated high stability in aqueous solution over a period of time indicating stabilization via surface-bound amino acid. Functionalized nanoparticles were conjugated with protein molecules through electrostatic attraction between the surface-terminated negatively charged carboxylate groups (COO(-)) of glutamic acid and the positively charged amino groups (NH(+)(3)) of the protein. The conjugation efficiency of the GNP:protein conjugates was confirmed qualitatively and quantitatively through gel electrophoresis and critical flocculation concentration analysis. The interaction between functionalized GNPs with protein molecules was investigated using fluorescence spectroscopy showing the fluorescence quenching of the tryptophan residues of protein molecules after conjugation. Circular dichroism (CD) studies of the conjugates confirmed that the protein undergoes a more flexible conformational state on the boundary surface of GNPs after conjugation. There was substantial conformational transition from alpha-helix to beta-sheet structure after conjugation of protein to GNPs.  相似文献   

11.
The ligand substitution reaction, Pd L(3,2,1)-edge and S K-edge x-ray absorption fine structure (XAFS), XAFS simulations, and valence-band and core-level x-ray photoelectron spectroscopy (XPS) have been used to systematically study the surface chemical and electronic properties of wet-chemically prepared Pd nanoparticles of varied size, molecular capping, and metal composition. It was found that the replacement of weakly interacting capping molecules (amine and tetra-alkylphosphonium bromide) with strongly binding thiols caused a considerable change in the surface bonding of Pd nanoparticles. However, the Pd d-electron counts (number of d electrons) remained almost unchanged before and after ligand substitution, which is unexpected since Pd atoms normally lose electrons to the more electronegative S atoms. XAFS results and simulations provided useful insights into the surface structural characteristics of Pd nanoparticles and satisfactorily accounted for the unexpected d-electron behavior involved in the ligand substitution process. XPS valence and core-level spectra further revealed a size-dependent d-band narrowing and presented complementary information to XAFS about the surface electronic properties of Pd atoms. The small weakly bound Pd nanoparticles seem inevitably to have a net d-electron depletion due to the influence of the surface effect (chemical adsorption by oxygen), which is more significant than the d-electron enriching nanosize effect. However, it was demonstrated that by forming Pd-Ag alloy nanoparticles, a net increase of the Pd d-electron counts can be realized. Therefore, it is illustrated that by manipulating the surface, size, and alloying effects, the electronic properties of Pd nanoparticles can be possibly tuned.  相似文献   

12.
Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.  相似文献   

13.
Cold nanoparticles(AuNPs) functionalized with supiamolecular macrocycles are versatile and diverse hybrid nanoinaterials,which combine and enhance the characteristics of the two components.In this mini-review,we summarize the recent research progress on the synthesis and assembly of AuNPs functionalized with different supramoleciilar macrocyclic compounds,i.e.,crown ethers,cyclophanes, cyclodextrins(CDs),cucurbit[n]urils(CB[n]),calix[n]arenes,and pillar[n]arenes(P[n]A).Meanwhile, applications of these supramoleciilar hybrid nanomaterials in the fields of sensors,biomedicine and plasmonic devices are also presented.  相似文献   

14.
Electronic noses (e-noses) employ an array of chemical gas sensors and have been widely used for the analysis of volatile organic compounds. Pattern recognition provides a higher degree of selectivity and reversibility to the systems leading to an extensive range of applications. These range from the food and medical industry to environmental monitoring and process control. Many types of data analysis techniques have been used on the data produced. This review covers aspects of analysis from data normalisation methods to pattern recognition and classification techniques. An overview of data visualisation such as non-linear mapping and multivariate statistical techniques is given. Focus is then on the use of artificial intelligence techniques such as neural networks and fuzzy logic for classification and genetic algorithms for feature (sensor) selection. Application areas are covered with examples of the types of systems and analysis methods currently in use. Future trends in the analysis of sensor array data are discussed.  相似文献   

15.
By co-deposition maghemite particles doped with Sm3+ are obtained with the average particle size within 9.9-10.9 nm. Samarium is shown to be present mainly in the near-surface layer of nanoparticles. It is found that the functionalization of the maghemite nanoparticle surface by organic molecules does not deteriorate their magnetic properties.  相似文献   

16.
New gold nanoparticles covered with cyclic phenylazomethine (CPA) were obtained by a one-pot synthesis. It is confirmed by XPS that imines of CPA in the nanoparticles (Au-CPA) are partially reduced to amines. The amine part of CPA in Au-CPA is attached to the surfaces of gold nanoparticles, and the imine part works as a redox-active site. A glassy carbon electrode modified with Au-CPA was revealed to work as an electrochemical probe for metal ion sensing.  相似文献   

17.
Aqueous dispersions of gold nanoparticles protected with a stimuli-sensitive diblock copolymer were studied as a function of pH and temperature. Poly(methacrylic acid)-block-poly(N-isopropylacrylamide), PMAA-b-PNIPAM, copolymer was synthesized using the RAFT technique. A one-pot method utilizing the dithiobenzoate functionalized polymer was used to prepare gold nanoparticles protected with PMAA-b-PNIPAM. The gold nanoparticles coated with block copolymers, with the PNIPAM block bound to the particle surface and PMAA as an outer block form stimuli-sensitive aggregates in water. The changes in the absorption maxima of the surface plasmon resonance, SPR, of the gold particles and in the size of the aggregates were investigated as a function of pH and temperature. pH was observed to affect the size of the aggregates, whereas the effect of temperature was moderate. However, a blue shift in the SPR was observed both with decreasing pH and increasing temperature. Whereas the PMAA blocks control the colloidal stability of the particles and their aggregates, the thermo-sensitive PNIPAM blocks have a noticeable effect on the polarity of the immediate surroundings of the particles.  相似文献   

18.
The environment of the central metal of a molecular machine-like copper rotaxane was observed by XAS experiments. The wheel of the rotaxane is a hetero-bischelating macrocycle containing both bidentate (phenanthroline) and terdentate (terpyridine) moieties. The axle of the assembly contains only a bidentate moiety. Applying an external chemical stimulus-oxidation of the metal-increases the number of coordinating atoms required by the metal template from 4 to 5. This variation is consistent with the oscillation of the wheel around the axle, leading thus to the most stable environment for the metal in the Cu(II) rotaxane.  相似文献   

19.
The article presents the findings of microscopic and electrochemical studies of size-dependent gold particles electrooxidation. Gold particles were immobilized on the surface of carbon-containing screen-printed electrodes. The experiment demonstrated that the transition from macroparticles to nanoparticles caused a shift of the maximum current potential of gold oxidation into the area with more negative potentials. A decrease in particle size resulted in an increase in the electrochemical activity of metal. A positive correlation between experimental and calculated curves confirms a mathematical model (2) and correctness of the calculations. Measured parameters of voltammograms, in particular, maximum current potential, can be used to describe the electrochemical activity and energy properties of nanoparticles.  相似文献   

20.
Several medicinally important compounds carry benzimidazole carbamate moiety. In the scientific literature, these molecules are represented in different tautomeric forms. In this report, conformational and tautomeric preferences were analyzed on the model benzimidazole carbamate (carbendazim), so as to understand the potential energy surface of the title compounds. Quantum chemical calculations have been performed using HF, B3LYP, and MP2 methods in gas phase and solvent phase on model benzimidazole carbamate to understand the conformational and tautomeric preferences. (1) PE surface of amide–imide tautomers, (2) electron distribution, (3) AIM analysis, (4) NBO charges, (5) 1,3-H shift, etc., have been investigated for carbendazim and its conformers. The molecular electrostatic potential (MESP) surfaces of carbendazim have been studied. Further to understand the polymorphism in benzimidazole carbamate, analysis of dimers of carbendazim has been carried out. The results indicate that a neglected tautomer is important and the tautomeric equilibrium is quite subtle in these systems and it should be extensively considered in all studies related to these drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号